CFB Software

Astrobe

Oberon for Arm Cortex-MO0, M3, M4 and M7 Microcontrollers

V9.3 Copyright © 2024 CFB Software 1of57
www.astrobe.com

Astrobe

Oberon for Arm Cortex-MO0, M3, M4 and M7
Microcontrollers

Table of Contents

1 INEFOAUCTION oottt ettt st st sttt b e s beesmee et e eneeeeeens 4
D |1 B 1Ty ol 1o 4 o o Y-SR 5
R - 1 o o LU 6

D A W (01 4 oY= Yo Vo [o Y- Yo [o PP 7
. T =T {0 o N o Yo [PP 8
D W o1 - YA o (o =Y o PP PPRURP 9
2.5 CoNfIGUratioNn FIlES ..cc.ueiiuiieiiieeiie ettt ettt st e e e sare e 10
251] o TV 2o] [o 1T PSR 10
2.5.2 Data AdArESSES ...ceeiiiieiiieiieeeite ettt ettt ste e st e e st s b e sre e e sabeesaees 10

2.6 Uploading EXecutable Filescuiiiiiiiiiiiciiie ettt s e 11
2.7 ReSOUrCE Data.....cccoociiiiiiiiiiiiiiiiiiiiic i 12

I o T =YV 1 [Yo [0 = PP PR 13
70t N = 11 TSP PSSO PPTOPRRPSRRPRRTR 15
3.2 CdOCK ettt et st sttt et b e eae e et et eereen 16
20 T 0o 1Y/ =T o PSP OP PSSP PR 17
34 DAt I M i e 18
2 T = 4 o T S OO PSS PPRROPPI 19
Bu6 GPIO ettt e b e bt st sttt e b e be e e he e saeeeteereens 20
S A G =Y o]] (ot USRS 22
B8 12 ettt ettt e bt e eh e e st e e bt e bt e be e e bt e e htesateeteeteens 23
78S T [o O OSSOSO PPTUURRUSRRUPRTUOO 24
3.10 [T 0] @] o} o o - URRRE 25
3.11 IMICU ettt et e b e bt e s bt e st st e bt e bt e s bt e sae e sab e e abeenbe e sheesaee st eaee 26
3.12 VLGN ettt st st e r e b saee s 27
3.13 Math - Mathematical FUNCEIONS........cooiiiiiiieniceceeeeeee e 28
3.14 MAU - Memory Allocation UNit........ccoeciieiiiiiiieccieeeceee e 29
3.15 (011 SO P PRSP PROPRRPSRPI 30
3.16 PUL e et b e saee s 31
3.17 RANAOM <.ttt et e s b e s e e 32
3.18 REAIS ettt e s e 33
V9.3 Copyright © 2024 CFB Software 20f 57

www.astrobe.com

3.19 (] DL | - PRSP 35

3.20 2 I GRS P PO P TSP PPRPRRPRRN 37
3.21 SOIIAL ettt ettt e a et 38
3.22) = O OO TUPPTO PO PRROPRROPRRTPIN 39
3.23 S O A e 40
3.24 1 g1 =T PP P PP OPPTT PP 42
3.25 SY ST EM e 43
3.26 B L 1= PP P PR PPRURTOPPRRIN 46
3.27 L] <L PP P PP PP PPPPPPPPPPPPPPPPPR: 48

N 1= o TU =~ o - PP 50
4.1 RUNEIME EFrOr COUBS....uiiiiiiiiiiiiie ettt ettt ettt sttt ettt e st e et e e sabeesbeeesareenas 50
4.2 User-defined ASSErTioNS.......cocueiiiiiiiiieree ettt ettt sttt et sreesereeesareeeas 51
4.3 Reporting RUNTIME EFTOTS c.coiiiiiiieieeeeeeeiittetee ettt e e e s sieree e e e e e s s sanraeeeaeeee s 52
4.4 Diagnosing RUNTIME EITOIS c.oovieiiiiiieiieeeeiiiteeee ettt e e e s sirrte e e e e e s s ssisreeeeeaeeees 53
4.5 Diagnosing SYStemM EXCEPLIONSuuuuui s 53
4.5.1 Using the Module Disassembler Listing:........ccoveeieiiieeieiiiee et 54
4.5.2 Using the Application Disassembler Listing:.........cccovveieiiiiieieiiiiee e 55

5 Compile, Link and Build COmMMaNnds.........ccccuiieiiiiiee ettt eevee e e e 56
T A - 4 o] LY SRR 56
5.2 Command REtUIN COUESc..uiiiiiiieiiieiiiiesiee sttt sene e 57
V9.3 Copyright © 2024 CFB Software 30f57

www.astrobe.com

1 Introduction

Astrobe is a fast and responsive integrated development environment for Windows. This can
be used to write software to run on the powerful Arm Cortex-M0, M3, M4 and M7
microcontrollers. In the following when we refer to Astrobe for Cortex-M it applies to all of
these versions.

Refer to the Astrobe website at https://www.astrobe.com/ for the latest information on the
availability of the different versions of Astrobe.

V9.3 Copyright © 2024 CFB Software 4 of 57
www.astrobe.com

https://www.astrobe.com/

2 File Descriptions

The Astrobe compiler and linker expect there to be a correspondence between the names of
modules in the source code and the associated filenames.

When you are creating a new source code file you should give the file the same name as its

module name with a .mod extension.

The filenames of module-related files created by Astrobe are made from the name of the
module and one of the following file extensions:

Ext Type Created by Used by Scope Description
.arm Binary | Compile Link Module Linkable object file
.asm Text Disassemble Application | Disassembler listing
.bin Binary | Link Upload Application | Linked binary executable
file
.def Text Edit Module SYSTEM interface
drf Binary | Link Disassemble Application | Reference information
Application
.ini Text Configuration | Compile Application | Compile, link, build and
Link upload options
Upload
st Text Disassemble Module Disassembler listing
.map Text Link Application | Code and data memory
usage
.mod Text Edit Compile Module Source code
.ref Binary | Link Traps Application | Trap reference resource
data
.res Any Link Module Resource data
.S Text Disassemble Application | Assembler source
.smb Binary | Compile Compile Module Symbol file of exported
items

V9.3 Copyright © 2024 CFB Software
www.astrobe.com

5of 57

Module File I I
(*.mod)
— Symbol Files @ Object Files
—— (*.smb) (*.arm)
—] o |
> Compile <
v
\ 4
\ 4 \ 4
Symbol File Object File
(*.smb) (*.arm) > Link
\ 4
\ 4
Map File Executable
(*.map) File (*.bin)

2.1 Example

A module named LcdDisplay is saved as the file LcdDisplay.mod. When it is compiled the
compiler generates a symbol file LcdDisplay.smb and an object file LcdDisplay.arm.

The main module of the application called DigiClock is saved as DigiClock.mod. DigiClock
imports LcdDisplay.

When you are editing DigiClock.mod in the Astrobe editor you can automatically open the
source code of LcdDisplay by clicking on its name in the IDE's Import navigation pane.

When DigiClock is compiled the compiler uses the information in the symbol file
LcdDisplay.smb to ensure that the use of all of the variables, procedures etc. from LcdDisplay
conforms to the declarations of those items in LcdDisplay. It is not necessary to have the
source code of LcdDisplay available to validate the use of its exported items.

When DigiClock is linked the linker uses the Link Options data from the current configuration
and combines the object files Main.arm, DigiClock.arm, LcdDisplay.arm and all other

V9.3 Copyright © 2024 CFB Software 6 of 57
www.astrobe.com

imported modules. The linker creates the memory usage map file DigiClock.map, the trap
reference resource file DigiClock.ref and the executable file DigiClock.bin.

When DigiClock is uploaded the flash memory of the target processor is programmed with
the contents of the executable file.

2.2 Linking and Loading

An application created with Astrobe is made up from a selection of the following modules:
e System Modules

Startup code module
Astrobe MCU-specific library modules
Astrobe general library modules

e User-developed Modules

Common user library modules
Application-specific modules
Main module

The simplest application consists of a single Main module accessing the System Modules.

The Linker / Loader combines all of the components needed by an application into a single
file in binary format suitable to be uploaded by Astrobe and executed on the target
processor.

A feature of the Oberon language is that all of the information regarding dependencies
between the various modules is defined in the source code. There is no need to create and
maintain separate 'make files' as commonly used in other systems.

The only details the Astrobe Linker / Loader needs to know to be able to build an application
are:

e The name of the main module
e The physical locations of the folders containing the library modules
e The start and end addresses of the data and code areas

When the Astrobe Project > Link command is selected the current module whose source
code is in view is taken to be the main module.

The details of the code and data address ranges and the physical locations of the library files
are as specified for the current configuration. See Library Organisation below for details.

If you are using the built-in function NEW to allocate memory from the ‘heap’ to dynamic
POINTER variables you can also use the configuration feature to specify:

e The address of the start of the heap
e The limit of the heap

V9.3 Copyright © 2024 CFB Software 7 of 57
www.astrobe.com

If you keep the default values the CPU RAM is shared between global variables, the stack
(local variables) and the heap (POINTER variables). This is suitable for typical applications.

However, if your system has non-CPU RAM that is directly addressable in the same way as
CPU RAM then you can change these values so the non-CPU RAM is used by the heap. More
memory is then available for global and local variables.

The values entered are listed in the linker progress report and linker map file.

2.3 Startup Code

The stack pointer, interrupt vectors etc. are initialised by startup code generated by the
linker. The startup code is the first part of the application to execute when the
microcontroller is reset.

The initialisation code of each module of the application is then executed in turn starting
with the lowest module in the dependency chain. Execution continues all the way up until
the initialisation code of the main module is started and the application proceeds.

Memory mapping control and phase-locked loop (PLL) options of the microcontroller are
configured in the process of initialising the Astrobe library module Main. The module Main
must be included in the IMPORT list of the main module of every Astrobe application to
ensure that the application is correctly initialised.

You can modify the source code of the Main, MCU and Traps modules to allow different
configurations of memory mapping and PLL features and to customise the output of runtime
error messages.

V9.3 Copyright © 2024 CFB Software 8 of 57
www.astrobe.com

2.4 Library Folders

Groups of common files that are shared between several applications developed using
Astrobe may be conveniently organised in a system of library folders avoiding the need to
duplicate copies of common / shared files.

The following is an example of the Configurations, Library and Examples folder structure
supplied with Astrobe for Cortex-MO:

v Astrobetl-v9.3
Configs
v Examples
General
v STM32F070
Display
v STM32F081
Display
v Lib
General
STM32F070
STM32F091

The folder Astrobe\Lib\General contains the generic system library files (e.g. Out.*, Reals.*
etc.) that are common to all Cortex-M microcontrollers.

The remaining folders in Astrobe\Lib contain microcontroller-specific versions of the library
files e.g. Main.*, MCU.* etc.

The library folders are standard Windows folders containing collections of source (*.mod),
symbol (*.smb) and object files (*.arm).

V9.3 Copyright © 2024 CFB Software 9 of 57
www.astrobe.com

2.5 Configuration Files

The Compile, Link, Build and Upload options for Cortex-M target microcontrollers are stored
in Configuration (*.ini) files. Examples of these are included with Astrobe for the target
microcontrollers used on the supported development boards.

The commands on the Astrobe Configuration menu are used to maintain and access the
configuration files. See the Configuration Files section of the Astrobe Help file for more
information.

Configuration entries include the locations of the library folders and the code and data
address ranges to be used when linking.

2.5.1 Library Folders

The list of library folders to be searched is stored in the configuration file. The name of each
library folder is stored on a separate line in the configuration’s Library Pathnames textbox.
Examples are:

1. Astrobe for Cortex-MO: The target microcontroller is an STM32F091.

D:\AstrobeMO0-v9.3\Lib\STM32F091
D:\AstrobeMO0-v9.3\Lib\General

2. Astrobe for Cortex-M4: The target is microcontroller is an STM32F303ZE

%AstrobeMA4%\Lib\STM32F303ZE
%AstrobeMA4%\Lib\General

where %AstrobeM4% is substituted with the location of the library and example files
that you specified when you installed or last upgraded Astrobe for Cortex-M4.

The editor, compiler, linker and builder first search the <current folder> when trying to
locate imported symbol and object files. They then search each of the library folders in the
list. The search continues until the file is found or the last folder in the list has been
searched.

<current folder> is the folder which contains the source file (*.mod) currently being compiled
or the main object file (*.arm) currently being linked.

2.5.2 Data Addresses

The configuration files have entries, Data Range and Code Range to allow you to specify the
Code and Data Flash and RAM address ranges to use when the Astrobe linker produces the
binary executable file.

Developers targeting other MCUs can create new configuration files and develop their own
hardware-specific library modules using the files and source code supplied with Astrobe as
examples.

V9.3 Copyright © 2024 CFB Software 10 of 57
www.astrobe.com

2.6 Uploading Executable Files

Development boards supported with Astrobe allow executable files (*.bin) which were
created by the Astrobe Link or Build commands to be uploaded via a USB connection from
the PC to the development board. This is done using the Astrobe Upload command.

Otherwise 3rd-party tools (e.g. STM32 ST-Link) can be used to upload the executables.
Developers can add entries to the Astrobe Tools menu to call command-line versions of
these tools from within Astrobe. For example, to launch ST-Link to upload your current
application to an STM32 microcontroller, you can add these details to your Tools.ini file:

[Command3]

MenuItem=&ST-LINK Upload

Path=C:\Program Files (x86)\STMicroelectronics\STM32 ST-LINK Utility\ST-LINK Utility\ST-
LINK_CLI.exe

Parameters=-P %FileRoot%.bin ©x08000000 -V -Q

WorkingFolder=%FileDir%

ConsoleApp=TRUE

See the Tools Menu section of the Astrobe Help file for a specification of each entry, and the
ST-LINK documentation for a specification of the ST-LINK parameters.

V9.3 Copyright © 2024 CFB Software 11 of 57
www.astrobe.com

2.7 Resource Data

The usual way to process constant data in an Oberon program is to declare the values in a
CONST list or store them in a global array in the initialisation section of a module. Neither of
these methods is practical when dealing with large amounts of constant data (e.g. the
definition of a font, a bitmap image etc.).

Typically on a PC system, this sort of data would be stored in a file to be read at runtime. As
a file system is often not available on the smaller embedded systems targeted by Astrobe, a
different approach is required. The solution used is to gather together all of the relevant
data files at link time and append them to the linked executable to be stored in Flash ROM
when the program is uploaded.

A library module ResData is provided to allow the programmer to conveniently access the
data from Flash ROM within the program as if it were data stored in a random-access disk
file. A description of the available functions is included in the Library Modules section of this
document.

Several resources can be attached to the one program; each is identified by its module
name. Typically, the steps involved in making a resource file are:

e Make a copy of the original data file
e Rename the copy to match the associated module name with the extension .res
e Move the renamed copy to the folder which contains the source code of the module

At link time, after the Astrobe linker has linked all of the object files <module>.arm into the
executable program, it looks for the corresponding resource files named <module>.res and
appends them to the executable.

If you need to associate several different resource files with one module you could create an
empty resource module for each separate resource e.g.

MODULE MyData;
END MyData.

and then include the names of those resource modules in the IMPORT list of the associated
module.

The resource file can contain any type of data. How that data is interpreted is determined by
the programmer. The only requirement is that the size of the file is a multiple of four bytes.

Study the source code of the SlideDemo application included with Astrobe for an example of
how to use resource files. The application reads AutoCad Slide-format vector images from
resource files and displays them on a screen.

V9.3 Copyright © 2024 CFB Software 12 of 57
www.astrobe.com

3 Library Modules

The following library modules are included with Astrobe for Cortex-M:

Module name

Description

Bits Bitwise operations on integers

Clock RTC time

Convert Conversion of integers to / from strings
DateTime Date and time formatting

Error Error messages referenced by Traps

FPU (MO, M3)

Support of mathematical operations on floating point numbers

GPIO

General Purpose IO pin configuration and control

Graphics Draw lines, circles and ellipses on display devices

HCDrive HCFiler - Low-level sector functions for SDHC Cards

HCDir HCFiler - Directory functions

HCFiles HCFiler - File output functions

2c Reading from and writing to the I2C bus in Master mode

In Formatted ASCII text input

LinkOptions Values of options supplied by the user at link time

Main Initialisation code required by an application

Math Basic mathematical and trigonometric functions

MAU Memory allocation unit

MCU Microcontroller-specific definitions and peripheral addresses
Out Formatted ASCII text output

Put String-handling helper functions used by Convert and Reals
Random Pseudo-random number generator

Reals Real number support and conversion to / from strings
ResData Access constant user data attached to the program by the linker
RTC Real-time Clock time and date

Serial Basic polled UART serial 10

SPI Reading from and writing to the Serial Peripheral Interface bus
Storage User-definable memory allocation / deallocation procedures
Strings General string-handling functions

SYSTEM Implementation-specific low level functions

Time Time formatting

Timers Microsecond and millisecond time measurement and delays
Traps Runtime error trapping

FPU, MAU and SYSTEM are special i.e. they are dependent on the version of the compiler
and must follow some specific conventions. See the library module descriptions below for

further details.

V9.3 Copyright © 2024 CFB Software

www.astrobe.com

13 of 57

If a user module calls the Oberon built-in functions NEW or DISPOSE then module MAU is
called and the MAU module is automatically imported. MAU also contains some functions
that can be called explicitly by a user module. The programmer must then include MAU in
the module's IMPORT list.

FPU is only needed for Astrobe for Cortex-MO and M3. If a user module uses mathematical
operations (e.g. divide, multiply etc.) on variables that are declared as REALs then an FPU
function is called and the FPU module automatically imported. Normally a user module
would not explicitly call an FPU function.

All other library modules are normal i.e.

e They must be explicitly imported by modules which access their exported items.
e They could be replaced with alternative versions developed by an Astrobe user.

Some library procedures use assertions to check that the values of input parameters are
within a valid range. Invalid values result in a runtime assertion error. The error codes and
reason for the error are listed in the section titled Runtime Error Codes below.

V9.3 Copyright © 2024 CFB Software 14 of 57
www.astrobe.com

3.1 Bits

Definition
DEFINITION MODULE Bits;
PROCEDURE* And*(i, j: INTEGER): INTEGER;
PROCEDURE* Or*(i, j: INTEGER): INTEGER;
PROCEDURE* Not*(i: INTEGER): INTEGER;
PROCEDURE* Nand*(i, j: INTEGER): INTEGER;
PROCEDURE* Nor*(i, j: INTEGER): INTEGER;
PROCEDURE* Xor*(i, j: INTEGER): INTEGER;

PROCEDURE* Xnor*(i, j: INTEGER): INTEGER;

END Bits.

Description

The module Bits contains functions for performing bitwise operations on integer values. For
example, if:

i := OFF@@ FFOOH;
j := OFGF@ OFOFH;

then:
And(i, j) = OF000 OF0OH
or(i, j) = OFFFO FFOFH
Not(3j) = QOOFF OOFFH
Nand(i, j) = @OFFF FOFFH
Nor(i, j) = ©0OOF @OFOH
Xor(i, j) = @BFF@ FOOFH
Xnor(i, j) = OFOOF OFFOH
V9.3 Copyright © 2024 CFB Software 15 of 57

www.astrobe.com

3.2 Clock
Definition
DEFINITION MODULE Clock;
IMPORT MCU, SYSTEM;
PROCEDURE* Pack*(hh, mm, ss: INTEGER; VAR ctime: INTEGER);
PROCEDURE* Unpack*(ctime: INTEGER; VAR hh, mm, ss: INTEGER);
PROCEDURE* Time*(): INTEGER;
PROCEDURE* GetHMS*(VAR hh, mm, ss: INTEGER);
PROCEDURE* SetHMS*(hh, mm, ss: INTEGER);
PROCEDURE* Hours*(): INTEGER;
PROCEDURE* Minutes*(): INTEGER;
PROCEDURE* Seconds*(): INTEGER;
PROCEDURE* Init*();

END Clock.

Description

The module Clock contains functions for accessing the time components of the Real Time
Clock (RTC).

Init should be called before any other Clock procedures are called. Using the current value of
PCLK it calculates and loads the values of the Prescaler integer and fraction registers, resets
the clock and then enables it.

SetHMS disables the clock, updates the value in the Consolidated Time Register 0 using the
hours, minutes and seconds parameters with the day of week (DOW) set to zero. The clock is
then re-enabled.

Time returns the value read from the Consolidated Time Register 0 with the day of week
(DOW) set to zero. The individual hours, minutes and seconds fields can be extracted from
this value using the Unpack function.

GetHMS is equivalent to:
Unpack(Time(), hh, mm, ss)

Hours, Minutes and Seconds can be used to conveniently access the individual components
of the time if they are not all required.

V9.3 Copyright © 2024 CFB Software 16 of 57
www.astrobe.com

3.3 Convert
Definition
DEFINITION MODULE Convert;
IMPORT Error, Put;
CONST
(* possible values for result *)
noError* = 0;

overflow* = 1;
syntaxError* = 2;

PROCEDURE StrToInt*(str: ARRAY OF CHAR; VAR n: INTEGER; VAR result:

PROCEDURE IntToStr*(n: INTEGER; VAR s: ARRAY OF CHAR);
PROCEDURE IntToHex*(n: INTEGER; VAR s: ARRAY OF CHAR);

END Convert.

Description

INTEGER);

The module Convert contains functions for converting integers to strings and vice versa.

V9.3 Copyright © 2024 CFB Software
www.astrobe.com

17 of 57

3.4 DateTime
Definition
DEFINITION MODULE DateTime;

IMPORT Put, RTC;

CONST
Jan*
Feb* =
Mar* =
Apr* =
May* =
Jun* =
Jul* =
Aug* =
Sep* =
Oct* = 10;
Nov* = 11;
Dec* = 12;

U}
WOoONAOAUVTDS WN R
Ge Lo e e We Wl We

“e

TYPE

(* hh:mm:ss *)

(* dd/mm/yy *)

String* = ARRAY 9 OF CHAR;
VAR

GetHMS*: PROCEDURE (VAR hrs, mins, secs: INTEGER);

SetHMS*: PROCEDURE (hrs, mins, secs: INTEGER);

GetDMY*: PROCEDURE (VAR dd, mm, yy: INTEGER);

SetDMY*: PROCEDURE (dd, mm, yy: INTEGER);
PROCEDURE HMSToStr*(hrs, mins, secs: INTEGER; VAR s: String);
PROCEDURE DMYToStr*(dd, mm, yy: INTEGER; VAR s: String);
PROCEDURE StrToHMS*(s: String; VAR hrs, mins, secs: INTEGER): BOOLEAN;
PROCEDURE StrToDMY*(s: String; VAR dd, mm, yy: INTEGER): BOOLEAN;

END DateTime.

Description

The module RTC contains functions for setting and retrieving the date and time components
of the Real Time Clock (RTC) and converting the date and time values to / from strings with
validation.

yy is assumed to be in the range 00..99 representing the years 2000 to 2099.

StrToHMS expects the string to be in the 24 hr fixed format "hh:mm:ss". Values less than 10

must be padded with leading zeroes. The separator ":" can be any single character.
StrToHMS returns TRUE if hh is in the range 00..23, and mm and ss are in the range 00..59.

StrToDMY expects the string to be in the fixed format "dd/mm/yy". Values less than 10 must
be padded with leading zeroes. The separator "/" can be any single character.

StrToDMY returns TRUE if yy is in the range 00..99, and the mm and dd values correctly
follow the rules for the number of days in a month, accounting for leap years.

V9.3 Copyright © 2024 CFB Software 18 of 57
www.astrobe.com

3.5 Error

Definition

DEFINITION MODULE Error;

IMPORT Put;

CONST
(* Library codes *)
input* = 20; (* Input parameter has an unexpected value *)
data* = 21; (* Data has an unexpected value *)
index* = 22; (* Index out of bounds *)
version* = 23; (* Version check failed *)
timeout* = 24; (* Timeout value exceeded *)

undefinedProc* = 25; (* Procedure variable not yet defined *)

TYPE
String* = ARRAY maxMsglLen OF CHAR;
ErrorMsgProc* = PROCEDURE (error: INTEGER; VAR msg: String);

VAR
Msg*: ErrorMsgProc;

END Error.
Description
The module Error contains definitions for the system and library module error codes.

The procedure Msg takes an error code and returns a string containing the corresponding
runtime error message or an empty string if it is a user-defined error.

A user-defined procedure can be assigned to Msg if user-defined error messages are
required.

V9.3 Copyright © 2024 CFB Software 19 of 57
www.astrobe.com

3.6 GPIO
Definition

DEFINITION MODULE GPIO;

CONST
Mode_In* = 0;
Mode_Out* = 1;
Mode_AF* = 2;
Mode_Analog* = 3;

Push_Pull* = 0;
Open_Drain* = 1;

Speed_Low* = 0;
Speed_Medium* = 1;
Speed_High* = 2;
Speed_VeryHigh* = 3;

Floating* = 0;
Pull Up* = 1;
Pull_Down* = 2;
AFo* =
AF1* =
AF2* =
AF3* =
AF4* =
AF5* =
AF6* =
AF7* =
AF8* =
AF9* =
AF10* =
AF11* =
AF12%* =
AF13* =
AF14%* =
AF15%* =

e we W

“e

VWoONOTUVDWNREO
R R R R R e We be W e G
uphphwNnRr O
e Ge We e e e

TYPE

PortConfiguration* = RECORD
mode*: INTEGER;
outputType*: INTEGER;
speed*: INTEGER;
resistors*: INTEGER;
alternateFunction*: INTEGER

END;

Pin* = RECORD
base*, no*: INTEGER
END;

PROCEDURE* Map*(base, no: INTEGER; VAR pin:
PROCEDURE* Configure*(VAR pin: Pin; config:

PROCEDURE* Put*(pin: Pin; state: BOOLEAN);

PROCEDURE* Reset*(pin: Pin);

PROCEDURE* Set*(pin: Pin);

Pin);

PortConfiguration);

PROCEDURE* Get*(pin: Pin; VAR state: BOOLEAN);

END GPIO.

Description

V9.3 Copyright © 2024 CFB Software
www.astrobe.com

20 of 57

The General Purpose Input/Output (GPIO) module contains functions to configure the
hardware characteristics, and control the behaviour, of each of the GPIO pins.

Map associates a variable of type Pin with a port name and number.

Configure converts the symbolic configuration options in the PortConfiguration record to the
numeric values required to set the configuration registers.

Get returns the current state of the pin. TRUE is high and FALSE is low.
Put sets the GPIO pin to high (state = TRUE) or clears it (state = FALSE).
Reset sets the GPIO pin to low.

Set sets the GPIO pin to high.

Example

The following extracts from the Astrobe Blinker example illustrates their use:

CONST
PORTA = MCU.GPIOABase;

VAR
LED: GPIO.Pin;
config: GPIO.PortConfiguration;

config.mode := GPIO.Mode_Out;
config.speed := GPIO.Speed_High;
config.outputType := GPIO.Push_Pull;
config.resistors := GPIO.Floating;
config.alternateFunction := GPIO.AF@

(* Green LED is connected to GPIO port A5 *)
GPIO.Map(PORTA, 5, LED);
GPIO.Configure(LED, config);

(* Switch the LED on *)
GPIO.Set(LED);

Refer to the STM Reference manual and Datasheet for your microcontroller for an
explanation of the configuration options.

V9.3 Copyright © 2024 CFB Software 21 of 57
www.astrobe.com

3.7 Graphics
Definition
DEFINITION MODULE Graphics;

IMPORT Error;

TYPE
DrawDotProc* = PROCEDURE (colour, x, y: INTEGER);

PROCEDURE Line*(colour, x0, y@, x1, yl: INTEGER);
PROCEDURE Circle*(colour, x0, y@, r: INTEGER);
PROCEDURE Ellipse*(colour, x0, y@, a, b: INTEGER);
PROCEDURE Init*(maxX, maxY: INTEGER; dd: DrawDotProc);

END Graphics.

Description

The module Graphics contains functions to draw lines, circles and ellipses on display devices
that allow a dot to be drawn at specified x and y co-ordinates.

Init must be called before any other Graphics function. The maxX and maxY parameters
specify the largest x and y co-ordinates at which a dot can be drawn. dd is a user-supplied
procedure which draws a dot at the x and y co-ordinates e.g.

PROCEDURE DrawDot(colour, x, y: INTEGER);
BEGIN

END DrawDot;

Init(132, 132, DrawDot);

References
Ref: Project Oberon - Wirth & Gutknecht, ACM Press 1992

V9.3 Copyright © 2024 CFB Software 22 of 57
www.astrobe.com

3.8 12C
Definition

DEFINITION MODULE I2C;

IMPORT Error, MCU, SYSTEM;

CONST
12C1* = 1;
1202% = 2;
TYPE

ConfigurePinsProc* = PROCEDURE;
PROCEDURE WriteByte*(addr: BYTE; data: BYTE);
PROCEDURE Write*(addr: BYTE; data: ARRAY OF BYTE);
PROCEDURE ReadByte*(addr: BYTE; VAR data: BYTE);
PROCEDURE Read*(addr: BYTE; VAR data: ARRAY OF BYTE);
PROCEDURE Init*(bus: INTEGER; ConfigurePins: ConfigurePinsProc; freq: INTEGER);

END I2C.

Description

The module 12C contains functions to communicate with slave devices that are connected to
the microcontroller’s 12C bus. This enables you to write applications which can use a wide
variety of external 12C standard parts, such as serial RAMs and EEPROMS, LCDs, and digital
sensors such as accelerometers, compasses, temperature and pressure gauges etc.

Init must be called before any other 12C function.

o The bus parameter is I12C1, I12C2 etc. depending on the capabilities of your target
microcontroller.

e The ConfigurePins parameter is a user-supplied procedure which should configure
the 12C function on the pins on the target microcontroller that the 12C device is
connected to.

o The freq parameter is the 12C clock rate and must be 100000. It is provided to
simplify porting to other versions of Astrobe which support more than one
frequency.

The addr parameter is the 7-bit value that identifies the slave 12C device as specified in its
datasheet. The Read / Write procedures shift the address value by one to allow for the read
/ write bit which is automatically set when reading, and cleared when writing.

The data parameter to Read and Write is declared as ARRAY OF BYTE so the actual
parameter used can be of any data type. The number of bytes transferred is equal to the
length of the array in bytes i.e. LEN(data).

See the I12C examples included with Astrobe for typical uses, example slave addresses and
processor-specific configuration and initialisation code.

V9.3 Copyright © 2024 CFB Software 23 of 57
www.astrobe.com

39 1In
Definition

DEFINITION MODULE In;

IMPORT Error, Convert;

CONST
(* Possible result values *)
noError* = Convert.noError;
overflow* = Convert.overflow;
syntaxError* = Convert.syntaxError;

TYPE
GetCharProc* = PROCEDURE (VAR ch: CHAR);

VAR
result*: INTEGER;

PROCEDURE Init*(g: GetCharProc);
PROCEDURE Char*(VAR ch: CHAR);
PROCEDURE String*(VAR s: ARRAY OF CHAR);
PROCEDURE Int*(VAR n: INTEGER);

END In.

Description

The module In contains basic text formatting input functions.

Input can be redirected from any device that accepts ASCIl character data by calling Init with
the name of a procedure that inputs a single character to that device. When the system
module Main is initialised, Serial.GetCh is the procedure passed to In.Init and input is
directed from the serial port UARTO.

In.Char reads the next character from the input device.

In.String skips all characters with a value less than an ASCII space (020X) and then reads all
characters until LEN(s) characters have been read or a character with a value less than an
ASCII space has been read. A terminating null character is appended to the array if it is not
full.

In.Int reads the next string and attempts to convert it into an integer. The global value result
is set to one of the possible result values depending on the success of the conversion.

V9.3 Copyright © 2024 CFB Software 24 of 57
www.astrobe.com

3.10 LinkOptions
Definition

MODULE LinkOptions;
IMPORT SYSTEM;

VAR
(* Startup parameters *)
ConfigID*: INTEGER;
HeapStart*: INTEGER;
HeapLimit*: INTEGER;
StackStart*: INTEGER;
ResourceStart*: INTEGER;
DataStart*: INTEGER;
DataEnd*: INTEGER;
CodeStart*: INTEGER;
CodeEnd*: INTEGER;

END LinkOptions.

Description

The module LinkOptions contains variables which are initialised with data taken from the
current configuration when the application was linked. Consequently, this data can be
accessed by the application when it is running on the target MCU.

LinkOptions must be the first module to be loaded when an application is linked. This can
normally be ensured by listing LinkOptions first in the IMPORT list of the Main module.

V9.3 Copyright © 2024 CFB Software 25 of 57
www.astrobe.com

3.11 McCU

Definition
DEFINITION MODULE MCU;

IMPORT SYSTEM;

CONST
(* see below *)

PROCEDURE* NVIC_EnableIRQ*(irgNo: INTEGER);

END MCU.

Description

Constants are included for the following peripheral and control registers:

Reset and Clock Control (RCC)

General Purpose Input/Output Ports (GPIO)

Timers (TIM)

Power Controller (PWR)

Real Time Clock (RTC)

Nested Vectored Interrupt Controller (NVIC)

Universal Synchronous Asynchronous Receiver Transmitter (USART)
Serial Peripheral Interface (SPI)

Inter-integrated Circuit (12C)

Each of the STM32 microcontrollers includes a different set of these capabilities. See the
corresponding source code module for details e.g.

AstrobeM3-v9.3\Lib\STM32L152\MCU.mod

NVIC_EnablelRQ is used in the initialisation of modules that implement interrupt handlers. It
enables interrupts for the peripheral assigned to the IRQ position irgNo. These positions are
enumerated in the NVIC chapter of the STM32 Reference manuals e.g. the irgNo value for
timer TIM2 on the STM32L152 is 28.

The source code of MCU and Main can be modified to enable customisation of the startup
process.

V9.3 Copyright © 2024 CFB Software 26 of 57
www.astrobe.com

3.12 Main
Definition
DEFINITION MODULE Main;

IMPORT LinkOptions, In, MCU, Out, Serial, SYSTEM, Traps;

END Main.

Description

Main must be included in the list of imports in the main module of the application. The
linker will report an error if Main was not loaded during the linking process.

When Main is initialised it executes the second-level startup code - memory mapping
control, runtime error-trapping initialisation, clock configuration, phase-locked loop (PLL)
setup etc.

Input/output is initialised to operate via a UART/USART by calling In.Init and Out.Init with
procedures Serial.GetCh and Serial.PutCh respectively.

LinkOptions must be the first module to be loaded when an application is linked. This can
normally be ensured by listing LinkOptions first in the IMPORT list of the Main module.

The source code of Main can be modified to enable user-customisation of the startup
process.

V9.3 Copyright © 2024 CFB Software 27 of 57
www.astrobe.com

3.13 Math - Mathematical Functions
Definition

DEFINITION MODULE Math;

IMPORT Error;

CONST

(* Various useful constants *)

pi* = 3.14159266;
twoDivPi* = 0.63661977;
fourDivPi* = 1.27323954;
piDivTwo* = 1.57079633;
piDivFour* = 0.78539816;
1n2* = 0.69314718;

PROCEDURE Sqrt*(x: REAL): REAL;
PROCEDURE Ln*(x: REAL): REAL;
PROCEDURE Exp*(x: REAL): REAL;
PROCEDURE Sin*(x: REAL): REAL;
PROCEDURE Cos*(x: REAL): REAL;
PROCEDURE ArcTan*(x: REAL): REAL;

END Math.
Description
The module Math contains basic mathematical and trigonometric functions.
Sqrt returns the square root of x.
Ln is the natural logarithm (log to base e) of x.
Exp returns the value of the mathematical constant e to the power of x.

The parameter x for Sin, Cos and ArcTan is in radians (2 * pi radians = 360°).

V9.3 Copyright © 2024 CFB Software 28 of 57
www.astrobe.com

3.14 MAU - Memory Allocation Unit
Definition
DEFINITION MODULE MAU;

IMPORT LinkOptions, SYSTEM;

TYPE
Proc* = PROCEDURE (VAR p: INTEGER; T: INTEGER);

PROCEDURE New*(VAR p: INTEGER; T: INTEGER);

PROCEDURE Dispose*(VAR p: INTEGER; T: INTEGER);
PROCEDURE SetNew*(p: Proc);

PROCEDURE SetDispose*(p: Proc);

PROCEDURE Allocate* (VAR p: INTEGER; typeDesc: INTEGER);
PROCEDURE Deallocate*(VAR p: INTEGER; typeDesc: INTEGER);

END MAU.

Description

The module MAU contains the functions used by the system for dynamic variable memory
allocation. MAU is dependent on the version of the compiler and must follow some specific
conventions. It should not be replaced with a user-defined module and its interface
definition must not be changed.

If a user module calls the Oberon NEW function to allocate dynamic memory to a pointer
variable then MAU.New is automatically called and the MAU module is automatically
imported as if you had added it to your import list. You should not call MAU.New directly.

MAU also contains some functions that can be called explicitly by a user module. If so, you
must then explicitly include MAU in the module's IMPORT list.

MAU.New calls Allocate which assigns the required number of bytes of memory from the
heap to the pointer variable.

MAU.Dispose calls Deallocate which can potentially be used to return dynamic memory that
is no longer needed to the heap.

The standard versions of Allocate and Deallocate only make the memory available for later
reuse if the block being deallocated is the most recent block to be allocated.

The standard versions of Allocate and Deallocate are included in the Storage library module
so that you can modify them. SetNew can be used to replace the standard version of
Allocate, and SetDispose can be used to replace the standard version of Deallocate with
ones that you have written. See the documentation of the module Storage for more
information.

V9.3 Copyright © 2024 CFB Software 29 of 57
www.astrobe.com

3.15 Out
Definition

DEFINITION MODULE Out;
IMPORT Convert, Error;

TYPE
PutCharProc* = PROCEDURE(ch: CHAR);

PROCEDURE Init*(p: PutCharProc);
PROCEDURE Char*(ch: CHAR);
PROCEDURE String*(s: ARRAY OF CHAR);
PROCEDURE Ln*();

PROCEDURE Int*(n, width: INTEGER);
PROCEDURE Hex*(n, width: INTEGER);

END Out.

Description

The module Out contains basic formatted text output functions. Output can be directed to
any device that accepts ASCII character data by calling /Init with the name of a procedure
that outputs a single character to that device. When the system module Main is initialised,
Serial.PutCh is the procedure passed to Out./nit and subsequent output is directed to the
serial port UARTO.

Procedure Out.Ln writes the carriage return / line feed pair of characters (0DX, 0AX)
Procedures with a width parameter output left-justified text. If the number of characters

that are output is less than width, a sufficient number of blanks are output to make up the
difference.

V9.3 Copyright © 2024 CFB Software 30 of 57
www.astrobe.com

3.16 Put
Definition

DEFINITION MODULE Put;

IMPORT Error;

PROCEDURE* Init*();

PROCEDURE* EOS*(VAR s: ARRAY OF CHAR);
PROCEDURE* Ch*(ch: CHAR);

PROCEDURE* Str*(s: ARRAY OF CHAR);
PROCEDURE Int*(n: INTEGER);

END Put.

Description

The module Put contains string-handling helper functions used internally by the modules
Convert and Reals.

V9.3 Copyright © 2024 CFB Software 31 of 57
www.astrobe.com

3.17 Random
Definition

DEFINITION MODULE Random;
PROCEDURE Next*(range: INTEGER): INTEGER;
PROCEDURE* Seed*(value: INTEGER);

END Random.

Description

A pseudo-random number generator based on the example in Programming in Oberon -
Reiser & Wirth, ACM Press 1992.

Next returns the next random number in a reproducible sequence.
Seed is called with the value 314159 when Random is initialised by the system.

Call Random.Seed with a different value if you want to initiate a different sequence of
numbers.

V9.3 Copyright © 2024 CFB Software 32 of 57
www.astrobe.com

3.18 Reals
Definition

DEFINITION MODULE Reals;

IMPORT Error, Put;

CONST
(* Possible values for result *)
noError* = 0;

overflow* = 1;
syntaxError* =

2;

PROCEDURE* Exponent*(x: REAL): INTEGER;

PROCEDURE* Mantissa*(x: REAL): REAL;

PROCEDURE Real*(m: REAL; e: INTEGER): REAL;

PROCEDURE* Ten*(e: INTEGER): REAL;

PROCEDURE StrToReal*(s: ARRAY OF CHAR; VAR x: REAL; VAR result: INTEGER);
PROCEDURE RealToStrE*(x: REAL; digits: INTEGER; VAR s: ARRAY OF CHAR);

PROCEDURE RealToStrF*(x: REAL; digits: INTEGER; VAR s: ARRAY OF CHAR);

END Reals.

Description

The module Reals contains functions to support operations using real numbers.
Exponent(r) returns the value of exp, and Mantissa(r) returns the normalised value of r,
resulting from a call to the Oberon function UNPK{r, exp). Real constructs a real number
from a normalised mantissa and exponent.

Ten returns the value 10.0¢

RealToStrE displays the real value in exponential notation, RealToStrF uses fixed point
notation. digits is the number (1..7) of significant digits to use.

V9.3 Copyright © 2024 CFB Software 33 of 57
www.astrobe.com

Examples

X digits | RealToStrE RealToStrF
001 0.0E+00 0.0
0.0|7 0.000000E+00 0.0
0.70710698 | 5 7.0711E-01 0.70711
0.70710698 | 6 7.07107E-01 0.707107
0.70710698 | 7 7.071070E-01 0.707107
0.999999 | 5 1.0000E+00 1.0
0.999999 | 6 9.99999E-01 0.999999
Reals.Ten(7) | 7 1.000000E+07 10000000.0
Reals.Ten(20) | 7 1.000000E+20 | 1.000000E+20

V9.3 Copyright © 2024 CFB Software
www.astrobe.com

34 of 57

3.19 ResData
Definition
MODULE ResData;
IMPORT Error, LinkOptions, SYSTEM;
TYPE
Resource* = POINTER TO RECORD
END;
DirEntry* = RECORD
name*: Name;
size*: INTEGER
END;
PROCEDURE* Size*(r: Resource): INTEGER;
PROCEDURE* GetInt*(r: Resource; index: INTEGER; VAR data: INTEGER);
PROCEDURE* GetByte*(r: Resource; index: INTEGER; VAR data: BYTE);

PROCEDURE* GetChar*(r: Resource; index: INTEGER; VAR ch: CHAR);

PROCEDURE* GetIntArray*(r: Resource; index: INTEGER; count: INTEGER;
VAR items: ARRAY OF INTEGER): INTEGER;

PROCEDURE* GetReal*(r: Resource; index: INTEGER; VAR data: REAL);

PROCEDURE* GetRealArray*(r: Resource; index: INTEGER; count: INTEGER;
VAR items: ARRAY OF REAL): INTEGER;

PROCEDURE* Count*(): INTEGER;
PROCEDURE GetDirectory* (VAR list: ARRAY OF DirEntry);
PROCEDURE Open*(VAR r: Resource; name: ARRAY OF CHAR);

END ResData.

Description

The module ResData contains functions to access constant resource data items (e.g. fonts,
bitmaps, input data etc.) that were appended to the executable by the Astrobe linker. See
the section titled Resource Data in this document for more information.

name is the (case-sensitive) name of the module that had the same name as the linked
resource file. If the name is longer than eight characters it is truncated to eight characters.

index is a zero-based 32-bit offset into the resource data.
Size returns the size of the resource data in bytes.

Count returns the number of named resources attached to the current application.

V9.3 Copyright © 2024 CFB Software 35 of 57
www.astrobe.com

Example

If the first word in the binary data file MyData.res is a 32-bit integer with the value 10, the
following code assigns 10 to the INTEGER variable count. The next ten words of resource

data are then interpreted as REAL data and stored into the dynamically allocated array

weights.

PROCEDURE GetData();
VAR
r: ResData.Resource;
count: INTEGER;
weights: ARRAY OF REAL;
BEGIN
ResData.Open(r, "MyData");
IF ResData.Size(r) = © THEN
(* Report error *)
ELSE
ResData.GetInt(r, @, count);
NEW(weights, count);

ResData.GetRealArray(r, 1, count,

weights)

V9.3 Copyright © 2024 CFB Software
www.astrobe.com

36 of 57

3.20 RTC

Definition
DEFINITION MODULE RTC;
IMPORT MCU, SYSTEM;
PROCEDURE SetHMS*(hrs, mins, secs: INTEGER);
PROCEDURE SetDMY*(dd, mm, yy: INTEGER);
PROCEDURE GetHMS* (VAR hrs, mins, secs: INTEGER);

PROCEDURE GetDMY* (VAR dd, mm, yy: INTEGER);

END RTC.

Description

The module RTC contains functions for setting and retrieving the date and time components
of the Real Time Clock (RTC).

yy is assumed to be in the range 00 .. 99 representing the years 2000 to 2099.
This module would not normally be directly imported. The same functions can be called

indirectly from the DateTime module which also includes the functions to convert the date
and time values to / from strings with validation.

V9.3 Copyright © 2024 CFB Software 37 of 57
www.astrobe.com

3.21 Serial
Definition

DEFINITION MODULE Serial;

IMPORT SYSTEM, MCU, GPIO;

CONST
USART2* = 2;
USART3* = 3;

PROCEDURE* TxReady*(): BOOLEAN;

PROCEDURE* PutCh*(ch: CHAR);

PROCEDURE* RxReady*(): BOOLEAN;

PROCEDURE* GetCh*(VAR ch: CHAR);

PROCEDURE Init*(usartNo, baudRate: INTEGER);

END Serial.

Description

The module Serial contains functions for sending and receiving single ASCII characters via a
USART serial port using polling.

Init is automatically called by Main to initialise USART2 with the baud rate set to 38,400
baud. The format is fixed at 8 bits, 1 stop bit and no parity.

The USART is selected by passing USART1 or USART2 as the usartNo parameter.

GetCh waits until a character is present in the UART receive buffer before returning it as a
parameter. It should be used if a response is required before the program can proceed.
Otherwise RxReady can be used to test if a character is available to be read before optionally
calling GetCh. If RxReady returns FALSE other processing can be performed instead.

Similarly, PutCh waits until the UART transmit buffer is empty before sending the character.
TxReady returns TRUE if the transmit buffer is empty and can be called before optionally
calling PutCh. If TxReady returns FALSE other processing can be performed instead.

V9.3 Copyright © 2024 CFB Software 38 of 57
www.astrobe.com

3.22 SPI

Definition

DEFINITION MODULE SPI;

IMPORT Error, MCU, SYSTEM;

CONST
SPIo* = 0;
SPI1* = 1;
TYPE

ConfigurePinsProc* = PROCEDURE;
PROCEDURE* Response*(): BYTE;
PROCEDURE* SendByte*(data: BYTE);
PROCEDURE* SendChar*(ch: CHAR);
PROCEDURE* SendData*(data: INTEGER);
PROCEDURE* Send*(buf: ARRAY OF BYTE);
PROCEDURE* ReceiveByte*(): BYTE;
PROCEDURE* ReceiveChar*(): CHAR;
PROCEDURE* ReceiveData*(): INTEGER;
PROCEDURE* Receive*(VAR buf: ARRAY OF BYTE);
PROCEDURE Init*(bus: INTEGER; ConfigurePins: ConfigurePinsProc);

END SPI.

Description

Serial Peripheral Interface (SPI) Functions used to communicate with slave devices that are
connected to the microcontroller's SPI bus. This enables you to write applications which can
use a wide variety of external SPI standard parts, such as LCD displays, SD cards, 7-segment
LEDs, and digital sensors such as accelerometers, magnetometers, etc.

Init must be called before any other SPI function.

e The bus parameter depends on the SPI capabilities of the microcontroller in use (e.g.
SPI0, SPI1 etc.) It is used to specify which SPI bus subsequent calls will operate on.

e The ConfigurePins parameter is a user-supplied procedure which should configure
the SPI function on the pins on the target microcontroller that the SPI device is
connected to.

See the SPIl examples included with Astrobe for typical uses, processor-specific configuration
and initialisation code.

The buf parameters are declared as ARRAY OF BYTE so the actual parameters used can be of
any data type.

V9.3 Copyright © 2024 CFB Software 39 of 57
www.astrobe.com

3.23 Storage
Definition
DEFINITION MODULE Storage;
IMPORT LinkOptions, MAU, SYSTEM;
PROCEDURE Allocate*(VAR p: INTEGER; typeDesc: INTEGER);
PROCEDURE Deallocate*(VAR p: INTEGER; typeDesc: INTEGER);
PROCEDURE* HeapStart*(): INTEGER;
PROCEDURE* HeapPtr*(): INTEGER;
PROCEDURE* HeapUsed*(): INTEGER;
PROCEDURE* HeapAvailable*(): INTEGER;
PROCEDURE* StackStart*(): INTEGER;
PROCEDURE* StackPtr*(): INTEGER;
PROCEDURE* StackUsed*(): INTEGER;
PROCEDURE* StackAvailable*(): INTEGER;

END Storage.

Description

The module Storage contains a copy of the default dynamic memory allocation /
deallocation procedures from the library module MAU that are invoked by the standard
functions NEW / DISPOSE.

You can modify the source code of these functions to tailor their performance and efficiency
to suit the requirements of your particular projects. There are additional benefits associated
with being able to substitute your own functions e.g. you could add memory usage tracing
features.

When the module Storage is initialised it calls

MAU.SetNew(Allocate);
MAU.SetDispose(Deallocate);

which replace MAU.Allocate and MAU.Deallocate with the functions Storage.Allocate and
Storage.Deallocate respectively.

Storage also contains stack- and heap-monitoring procedures.
HeapStart returns the address of the start of the heap.

HeapPtr returns the address of the start of the block of memory that will be used for the
next allocation from the heap.

HeapUsed returns the number of bytes or RAM currently used by all dynamic variables.

HeapAvailable returns the number of bytes of RAM currently free to be used for additional
dynamic variables. By default this value is shared with the stack.

V9.3 Copyright © 2024 CFB Software 40 of 57
www.astrobe.com

StackStart returns the address of the start of the stack.

StackPtr returns the address of the start of the block of memory that will be used for the
next allocation from the stack.

StackUsed returns the number of bytes or RAM currently allocated to the stack.

StackAvailable returns the number of bytes of RAM currently free to be used for additional
storage. By default this value is shared with the heap.

V9.3 Copyright © 2024 CFB Software 41 of 57
www.astrobe.com

3.24 Strings

Definition
DEFINITION MODULE Strings;
IMPORT Error;

PROCEDURE* Length*(s: ARRAY OF CHAR): INTEGER;

PROCEDURE* Extract*(src: ARRAY OF CHAR; pos, n: INTEGER;
VAR dest: ARRAY OF CHAR);

PROCEDURE* Copy*(src: ARRAY OF CHAR; VAR dest: ARRAY OF CHAR);

PROCEDURE* Append*(src: ARRAY OF CHAR; VAR dest: ARRAY OF CHAR);

PROCEDURE Pos*(pattern, s: ARRAY OF CHAR; pos: INTEGER): INTEGER;

PROCEDURE* Delete*(VAR s: ARRAY OF CHAR; pos, n: INTEGER);

PROCEDURE* Insert*(src: ARRAY OF CHAR; pos: INTEGER; VAR dest: ARRAY OF CHAR);
PROCEDURE Replace*(src: ARRAY OF CHAR; pos: INTEGER; VAR dest: ARRAY OF CHAR);
PROCEDURE* Cap*(VAR s: ARRAY OF CHAR);

END Strings.

Description

Contains general functions for processing strings i.e. string constants and arrays of
characters terminated with the null character 0X.

Length(s) returns the number of characters in s up to but excluding the first OX.

Extract(src, pos, n, dest) extracts a substring dest with n characters from position pos (0 <=
pos < Length(src)) in src.

Copy(src, dest) copies Length(src) characters to dest.
Append(s, dest) has the same effect as Insert(s, Length(dest), dest).

Pos(pat, s, pos) returns the position of the first occurrence of string pattern pat in s.
Searching starts at position pos. If pat is not found, -1 is returned.

Delete(s, pos, n) deletes n characters from s starting at position pos (0 <= pos < Length(s)).

Insert(src, pos, dest) inserts the string src into the string dest at position pos (0 <= pos <=
Length(dst)). If pos = Length(dest), src is appended to dest.

Replace(src, pos, dest) has the same effect as Delete(dest, pos, Length(src)) followed by an
Insert(src, pos, dest).

Cap(s) replaces each lower case letter within s by its upper case equivalent.

V9.3 Copyright © 2024 CFB Software 42 of 57
www.astrobe.com

3.25 SYSTEM
Definition
DEFINITION MODULE SYSTEM;
PROCEDURE ADR*(variableName: <any type>): INTEGER;
PROCEDURE ALIGN*();
PROCEDURE BIT*(address, bitNo: INTEGER): BOOLEAN;
PROCEDURE CLZ*(data: INTEGER): INTEGER;
PROCEDURE COPY*(src, dest, nWords: INTEGER);
PROCEDURE EMIT*(instruction: INTEGER);
PROCEDURE EMITH*(instruction: INTEGER);
PROCEDURE EOR*(x, y: INTEGER): INTEGER;
PROCEDURE GET*(address: INTEGER; VAR v: <any basic type>);
PROCEDURE GET*(VAR address: INTEGER; VAR v: <any basic type>; inc: INTEGER);
PROCEDURE LDREG*(Rn, v: INTEGER);
PROCEDURE NULL*(x: <numeric type>): BOOLEAN;
PROCEDURE PUT*(address: INTEGER; x: <any basic type>);
PROCEDURE PUT*(VAR address: INTEGER; x: <any basic type>; inc: INTEGER);
PROCEDURE RBIT*(data: INTEGER): INTEGER;
PROCEDURE REG*(Rn: INTEGER): INTEGER;
PROCEDURE REV*(data: INTEGER): INTEGER;
PROCEDURE REV16*(data: INTEGER): INTEGER;
PROCEDURE REVSH*(data: INTEGER): INTEGER;
PROCEDURE SIZE*(typeName: <any type>): INTEGER;
PROCEDURE VAL*(typeName: <any type>; x: <any type>): typeName;

END SYSTEM.

Description

SYSTEM is a pseudo-modaule i.e. it contains no source code. Its functionality is implemented
entirely within the compiler. Some of the functions allow parameters of any basic type i.e.
INTEGER, SET, BOOLEAN etc. to be passed. Others allow parameters of any type. Generic
functions of this type are normally not possible to write using the Oberon language.

The presence of SYSTEM in the IMPORT list of a module indicates that the module is
implementation-dependent.

ADR returns the absolute address of the given variable.

BIT returns TRUE if the specified bit of the contents of the given address is equal to 1,
otherwise FALSE.

V9.3 Copyright © 2024 CFB Software 43 of 57
www.astrobe.com

COPY copies nWords consecutive words from src to dest, where src, dest and nWords are all
INTEGERSs. src and dest are absolute memory addresses and can be obtained from variable
names using the SYSTEM.ADR function.

GET loads the value of the word or byte at absolute memory location address into variable v.
The size of the variable v determines whether a load register byte (LDRB) or word (LDR)
instruction is used to perform the transfer.

PUT stores the value of x into the word or byte at absolute memory location address. The
size of x determines whether a store register byte (STRB) or word (STR) instruction is used to
perform the transfer.

An optional integer constant parameter inc can be used with GET and PUT to automatically
increment / decrement the value of address. If inc is in the range 1..255 the address is
incremented after the value is stored. If inc is in the range -1..-255 the address is
decremented before the value is stored. Typical values for inc are 1 for byte accesses and 4

for word accesses.

NOTE: If address is a global record field or array element and inc is non-zero the compiler
will report a read-only error.

SIZE returns the number of bytes used by a variable of the given type.
Astrobe ARM Cortex-M Extensions:

Extensions to the standard Oberon SYSTEM features are provided to give low-level access to
ARM Cortex-M features that might otherwise require the use of assembly language.

ALIGN inserts a NOP instruction if necessary at the current code location to ensure that the
next instruction is aligned on a word boundary.

CLZ counts the number of leading zeroes in an integer value.

EMIT inserts the 32-bit value of an ARM Thumb-2 instruction at the current code location.
Examples of its use can be seen in the source code of the Traps and IAP library modules.

EMITH inserts the 16-bit value of an ARM Thumb instruction at the current code location. A
compilation error results if the value is not a valid 16-bit positive integer.

EOR (x, y) performs a bitwise Exclusive OR of the two integer values.
LDREG (Rn, v) stores the value v in CPU register Rn where Rn is a constant in the range 0..15.
NULL returns true if x is negative or positive INTEGER or REAL zero.

RBIT, REV, REV16 and REVSH are bit and byte-ordering functions. Each generates the single
Thumb-2 instruction with the same name:

e RBIT reverses the bit order of the integer value.

e REVreverses the byte order of the integer value.

V9.3 Copyright © 2024 CFB Software 44 of 57
www.astrobe.com

e REVI16 reverses the byte order in each 16-bit halfword of the integer value.

e REVSH reverses the byte order in the lower 16-bit halfword of the integer value and
sign extends the result to 32 bits.

REG (Rn) returns the current value of CPU register Rn where Rn is a constant in the range
0..15. e.g. SYSTEM.REG(13) returns the current value of the stack pointer. Use a local
variable in a non-leaf procedure to store the returned result to avoid this register value
being overwritten when it is assigned. Refer to the Disassembler listing to check that the
code generated is what you expected.

VAL is a type-transfer [typecast mechanism. It should be used with extreme care as it
effectively bypasses any type-safety checks except to ensure that the sizes of each type are
the same. It allows the value of x (which can be of any type) to be interpreted as if it were
declared as type typeName. No value conversion takes place.

V9.3 Copyright © 2024 CFB Software 45 of 57
www.astrobe.com

3.26 Timers
Definition

DEFINITION MODULE Timers;

IMPORT Error, MCU, SYSTEM;

CONST
uSecs* = 1000000;
MSecs* = 1000;
TIMO* = 0;
TIM1* = 1;

TYPE

Timer* = RECORD
base*, multiplier*, units*: INTEGER
END;
PROCEDURE* Delay*(timer: Timer; delay: INTEGER);
PROCEDURE* Init*(VAR timer: Timer; timerNo, units: INTEGER);
PROCEDURE* Start*(timer: Timer);
PROCEDURE* Stop*(timer: Timer);

PROCEDURE* Elapsed*(timer: Timer): INTEGER;

END Timer.

Description

The module Timers contains functions for timed delays and for measuring elapsed execution
time. Several different timers can be used in the same application. The timer parameter
determines which one is used.

Init must be called before the first call to each different timer. timerNo is used to associate
one of the timers (e.g. TIM2) to the timer variable. units can be either Timers.MSecs or
Timers.uSec. The units specified in Init are used for that timer for all subsequent calls. The
units can be changed by calling Init again.

NOTE: Check the number of timers that are available and their capabilities in your
microcontroller reference manual. For example, not all timers are able to handle
microsecond intervals.

Examples are:

Init(usecTimer, Timers.TIM2, Timers.uSecs);
Init(msecTimer, Timers.TIM3, Timers.MSecs);

Consequently, both of these calls would both result in a 1-second delay:

Delay(usecTimer, 1000000);
Delay(msecTimer, 1000);

The delay functions reset the timer and then execute a continuous loop until the measured
elapsed time exceeds the given delay.

V9.3 Copyright © 2024 CFB Software 46 of 57
www.astrobe.com

Elapsed returns the time that passed between the two most recent calls of Start and Stop.

Because the delay functions reset the timer they should not be called in sections of code
that are being timed by the same timer.

V9.3 Copyright © 2024 CFB Software 47 of 57
www.astrobe.com

3.27 Traps
Definition

DEFINITION MODULE Traps;

IMPORT LinkOptions, Error, Out, ResData, SYSTEM;

CONST
MinUserTrap* = 200;
MaxTrap* = 255;
TraceDepth = 16;
TYPE

InterruptHandler* = PROCEDURE();
Name* = ARRAY 16 OF CHAR;

ID* = RECORD
addr*, lineNo*: INTEGER;
END;

Trace* = RECORD
id*: ARRAY TraceDepth OF ID;
errorCode*, count*: INTEGER

END;

UserHandler* = PROCEDURE(trace: Trace);

VAR
trace*: Trace;

PROCEDURE* ShowRegs*(b: BOOLEAN);

PROCEDURE GetName*(target: INTEGER; VAR modName, procName: Name);
PROCEDURE* Length*(s: ARRAY OF CHAR): INTEGER;

PROCEDURE* Assign*(addr: INTEGER; p: InterruptHandler);
PROCEDURE* SetUserHandler*(code: INTEGER; p: UserHandler);
PROCEDURE Init*;

END Traps.

Description

The module Traps Implements default interrupt handlers for software interrupts and the
standard internal Cortex-M exceptions: e.g. NMI and Hard Fault. The default handlers are
installed when Traps./nit is called from the Main.Init function at startup time.

The supervisor call (SVC) instruction handler is invoked whenever Astrobe executes a
statement which results in a runtime error (e.g. array index out of range, division by zero
etc.)

Control also passes to the handler if an ASSERT statement is executed with a parameter
which equates to FALSE.

Traps.Assign is used to assign an interrupt handler to the related interrupt vector.

Traps.GetName identifies the name of the module and the procedure within it which
contains the instruction with the address Target.

Traps.Length returns the number of characters contained in the string s.

V9.3 Copyright © 2024 CFB Software 48 of 57
www.astrobe.com

Traps.ShowRegs determines whether or not register values are displayed when the trap
handler is executed.

Traps.SetUserHandler allows a user-defined procedure that has been written to handle a
runtime error differently from the default behaviour, to be assigned to a specific assertion
code in the range 200 .. 255. An example application, called UserTraps, is supplied with
Astrobe to demonstrate how this can be done.

You can modify the source code of Traps to enable further user-customisation of the
interrupt handling process if required.

See the Interrupt Handlers section above and the Runtime Errors section below for more
details.

V9.3 Copyright © 2024 CFB Software 49 of 57
www.astrobe.com

4 Debugging

4.1 Runtime Error Codes

The error codes assigned to runtime errors and assertions detected by Oberon are:

Code Reason
1 | Index out of bounds
2 | Type test failure
3 | Source and destination arrays are not the same length
4 | Invalid value in case statement
5 | Attempt to call a NIL procedure variable
6 | String too long or destination string too short
7 | Integer division by zero or negative divisor
8,9, 10 | FPU assertions
11 | Reserved
12 | Attempt to dispose a NIL pointer
13..19 | Reserved
20..25 | Library assertions — see the Error module for definitions
26..99 | Reserved
100..199 | User-defined assertions
200..255 | User-defined assertions with customisable trap handlers

V9.3 Copyright © 2024 CFB Software

www.astrobe.com

50 of 57

4.2 User-defined Assertions

You can use the Oberon ASSERT function to trap an application-specific error e.g. to detect
impending stack overflow:

ASSERT(Storage.StackAvailable < minRequired, 130)
where minRequired is a user-defined value.

User-defined assertions should use error codes in the range 100 — 255 to distinguish them
from Runtime and Library errors.

Error codes 100 — 199 will display error information in the same way as the Library errors.
Error codes 200 — 255 can be used if you want to handle the error in a different way. An

example application, called UserTraps, is supplied with Astrobe to demonstrate how this can
be done.

V9.3 Copyright © 2024 CFB Software 51 of 57
www.astrobe.com

4.3 Reporting Runtime Errors

The above runtime, library and programmer-defined error conditions and assertions result in
the execution of a Cortex-M supervisor call instruction (SVC) which calls a default trap
handler in the Astrobe library module Traps.

The trap handler reports:

e an error code or message describing what type of error it is

e the name of the module and procedure that was being executed

e the address of the instruction which caused the error

e the line number of the corresponding statement in the source code

e the values of the registers which are automatically saved at the time of the runtime
error or assertion failure

If the Stack Trace option on the Astrobe Configuration dialog was enabled when the
module was compiled, the details of the sequence of procedure calls that led to the
error are included:

tTraps.Buff
estTrap init

a
&
a8
a
a
a

[t

If the procedure call Traps.ShowRegs(FALSE) is made before the trap occurs the display
of register values is suppressed. This is useful if the display only has a few lines and
cannot show all of the information without scrolling.

The error messages that are displayed are defined in the module Error. If there is no
message corresponding to the error code, the error code is displayed instead.

The information is reported using the standard IO functions exported by the Astrobe Out
module. By default the messages will appear on a serial terminal connected to UARTO. The
trap handler then processes an infinite loop until the system is reset.

You can modify the source code of Traps to allow customisation of the trap-handling
process.

When debugging your program, you can use the register values in conjunction with the
assembly listing of the module or application to help identify the values of variables at the
time of failure.

V9.3 Copyright © 2024 CFB Software 52 of 57
www.astrobe.com

4.4 Diagnosing Runtime Errors

When a runtime error occurs or an assertion fails, use the module name and line number
information reported by the trap handler to identify the source of the error.

e Open the source code of the named module in the editor
e Use the Search > Goto command to locate the actual source line by its line number.

4.5 Diagnosing System Exceptions

Traps caused by runtime errors or assertion failures which result in Supervisor Calls (SVC) are
easy to locate as they give you the module name and line number of the offending line of
source code. Hardware-related and other system exceptions are more difficult to locate as
they only give you the module name and the address of the instruction that failed.
Fortunately they are much rarer than runtime errors.

The type of Cortex-M hardware system exceptions handled by the Astrobe Traps module can
include the following:

e NMI

e Hard Fault

e Memory Manager
e Bus Fault

e Usage Fault

Refer to the ARM v7-M Architecture Reference Manual which can be downloaded from the
ARM website, for details of the possible causes of these exceptions.

If the exception is not caused by a secondary effect, and your edition of Astrobe includes the
Module and Application Disassemblers it is usually possible to identify the line of code in
your application which generated the offending instruction. To do this you need to have:

e The runtime error message displayed when your application terminated. This will
give you the module name and exception address.

e The map file for the main module (<ModuleName>.map) which was created when
you linked / built the application. The start address of the module is listed in the
Code Address column of the map file.

e A Module Disassembler listing (Project > Disassemble Module) or an Application
Disassembler listing (Project > Disassemble Application) of the problem module.

V9.3 Copyright © 2024 CFB Software 53 of 57
www.astrobe.com

4.5.1 Using the Module Disassembler Listing:

& Astrobe for Cortex-M0 Professional Edition - STM32F091 = O *
File Edit Search View Project Run Configuration Tools Help
- P = p .
A@EHS B& 9 B EEOWYIXN| P b @
Procedures Imports HCDirmod HCDirlst
First# =
GetFreeHeader® PROCEDURE [TERTIrlaa* (VAR hdr: Header);
InitDisk* BEGIN
484 @194H BBS83H push {r@, rl, 1r }
Next* CLEAR(hdr)
Open¥* END InitHeader;
ToDMY* 486 B196H B98BEH ldr rd,[spl
ToHMS* 4838 8198H B2leaH movs rl,#8
UpdateDisk*® 418 819AH 82281H movs r2,#1
UpdateHeader* 412 819CH @ee2l12H 1=1= r2,r2,%#8
414 819EH @4608H nop
416 @1ABH @6881H str rl, [r8]
418 81A2H @38e4H adds ra, 84
428 81lA4H @3A81H subs r2,#1
422 81lA6H BDCFEH bgt.n -18 -> 416
424 81lA8H BbBeezH add sp,H8
426 @1AAH @BDBEH pap { pc?
PROCEDURE* ToDMY*({hdr: Header; VAR dd, mm, yyv: INTEGER);
VAR
date: INTEGER;
BEGIN
428 @1ACH @BS1FH push {r@, rl, r2, r3, r4, 1r }
438 81AEH @B8sl1H sub sp,#4
date := hdr.date;
432 @1BBH B9881H ldr r@, [sp,#4]
434 B1B2ZH BGACEH ldr rd, [re,#44]
436 @1B4H B9BBEH str rd,[sp]
vy := BFX(date, 31, 26);
438 @1B6H @9888H ldr r8, [sp]
444 81B8H @8EsaH lsrs ré,ré,#26
442 @1BAH ©@9985H ldr rl, [sp,#2@]
444 81BCH BoBesH str ré,[rl]
mm := BFX(date, 25, 22);
445 B1BEH @9388H ldr rd,[spl
448 81CaH @alsaH 1s1s ra,rd,#6
458 81C2H GarFeaH lsrs ra,ré,#23
452 @1CAH @9984H ldr r1,[sp,#16]
454 81CaH B6eesH str ré,[rl]
Line 302 Col 13 D:\Astrobe MO-v9.3\Lib\STM32F051HC Dir Ist

You can calculate the offset and find the corresponding line of code in the disassembly
listing using the following formula:

offset = exception address — start address — n

where n is 8 (4 for Cortex-MO0). It is subtracted because the Cortex-M program counter is
ahead of the current instruction by that many bytes. If you look in the disassembler listing
for the instruction with the same offset you will see the accompanying Oberon source line
which generated that instruction.

V9.3 Copyright © 2024 CFB Software 54 of 57

www.astrobe.com

4.5.2 Using the Application Disassembler Listing:

&4 Astrobe for Cortex-MO Professional Edition - STM32F091 = O *

File Edit Search View Project Run Configuration Teools Help

BN =R IR g = F0WeX| P @

Procedures Imports TestTraps.mod TestTraps.asm

ResData.Count 9444 @24EAH @83881183H =

ResData.GetByte

ResData.GetChar PROCEDURE Main..init:

ResData.@etDirectory 9444 @24E4H BBS88H push ilr }

ResData.GetInt 9446 @24E6H @F7FFFFCBH bl.w Main.Init

ResData.GetIntArray 9458 @24EAH B@ES88H b a -» 9454

ResData.GetName 9452 @24ECH 88881H <LineNo: 129>

ResData.GetReal 9454 @24EEH @BD8aH pop {pc }

ResData.GetRealArray

ResData.COpen MODULE TestTraps:

ResData.S5ize 9456 @24FeH @

Serial..init

serial.ConfigurePins L aSn W TestTraps . BufferOverflowg

Serial.GetCh 9458 @24F4H BBS88H push i 1lr }

serial.Init 9462 @24F6H @BA32H sub sp,#8

serial.PutCh 9464 @24FBH @2888H movs ré,#0

Serial.RxReady 9466 @24FAH 89881H str ré, [sp,#4]

serial.SetUsartho 9468 @24FCH @488AH ldr ré, [pc,#48] -» 9512

Serial.TxReady 9478 B24FEH @9gaaH str réd,[sp]

TestTraps..init 9472 @2588H @938eH ldr ré,[sp]
BufferOverftlow 9474 @2582H 8AS%8l1H add rl,sp,#4

Traps..init 9476 @2584H @2282H movs r2,#2

Traps.Assign 9478 @2586H BOF7FEFB1FH bl.w Convert.IntToS5tr

Traps.GetName 9482 @258AH BGEA88H b a -» 9486

Traps.HalfWord 9434 @258CH 8eal1EH <LineNo: 38>

Traps.IdentifylLocation 9436 @258EH 8AB81H add ré,sp,#4

Traps.IdentifyTrap 9438 @2518H 82l1a2H movs rl,#2

Traps.Init 9498 @2512H @F7FEFCISH bl.w Out.5tring

Traps.IntArrayToChars 9494 @2516H GEesaH b @ -> 9498

Traps.IsBL 9496 @2518H @@81FH <LineNo: 31>

Traps.IsBLX 9498 @251AH BFJFEFC45H bl.w Qut.Ln

Traps.Length 9582 @251EH @E/a8H b a -» 9586

Traps.NextLR 9584 @2528H 8e81FH <LineNo: 31>

Traps.0utName 9586 @2522H @B&aazH add sp,#B

Traps.0utStackItem 9588 @2524H eBDaaH pop 1pc ¥

Traps.5SetUserHandler 9518 @82526H e46CeH nop

Traps.5howRegs 9512 @2528H 999

Traps.5ShowStack

Traps.StackAdjusted PROCEDURE TestTraps..init:

Traps.5tackedRegs 9516 @252CH @B58aH push i1lr }

Traps.5tackTrace 9518 @252EH @OF7FFFFE1IH bl.w TestTraps.BufferOverflow

Traps.SVCTrap 9522 @82532H @E/a8H b 8 -» 9526

Traps.SvsHandler 9524 @32534H 88e823H ¢LineNo: 35>

Line 4376

Col 11

D M\Astrobe MO-v3. 3\Examples General Test Traps.asm

You can calculate the offset and find the corresponding line of assembler code with that
offset in the disassembly listing using the following formula:

offset = exception address — code start address

where the addresses are hexadecimal numbers and code start address is the first Code

Range entry on the Astrobe Configuration dialog.

The heading of that block of assembly instructions will show the name of the module and
procedure where the instruction is located.

V9.3 Copyright © 2024 CFB Software

www.astrobe.com

55 of 57

5 Compile, Link and Build Commands

Separate command-line programs for the Oberon Cortex-M Compiler, Builder and Linker
which correspond to the built-in compile, build and link commands in the IDE are included
with the Professional Edition of Astrobe.

The separate compiler, builder and linker can be used with automatic 'build' tools, DOS-
batch commands etc. These are useful for handling a regular series of compilations and links
when building multiple configurations, multiple targets etc. They can also be useful when
recompiling a number of modules after changing the interface of a low-level imported
module or upgrading to a newer version of Astrobe.

All of the commands have two required parameters.

AstrobeCompile <configfile>.ini [<path>]<ModuleName>.mod
AstrobeBuild <configfile>.ini [<path>]<MainModuleName>.mod

AstrobelLink <configfile>.ini [<path>]<MainModuleName>.mod

MainModuleName is the filename of the main module being compiled or linked.
configfile is the name of the configuration file containing the options to use.
5.1 Examples

AstrobeCompile D:\AstrobeM3-v9.3\Configs\STM32L152.ini Lists.mod
AstrobeBuild D:\AstrobeM3-v9.3\Configs\STM32L152.ini Blinker.mod

AstrobeLink D:\AstrobeM3-v9.3\Configs\STM32L152.ini Blinker.mod

V9.3 Copyright © 2024 CFB Software 56 of 57
www.astrobe.com

5.2 Command Return Codes

If the command executes without any compiler or linker errors it returns zero otherwise it
returns 1. Examples of DOS batch scripts, for use with Astrobe for Cortex-M3, which use
these return values are:

REM

REM Rebuild General Library

REM

SET cfg=%AstrobeM3%\configs\STM32L152.ini
SET compile="C:\Program Files\AstrobeM3\AstrobeCompile.exe"

REM

cd %AstrobeM3%\Lib\General

del *.arm

del *.smb

%compile% %cfgh
if errorlevel 1
%compile% %cfgh
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1

Math.Mod

goto ErrorExit
Random.Mod
goto ErrorExit
Put.Mod

goto ErrorExit
Convert.Mod
goto ErrorExit
In.Mod

goto ErrorExit
Out.Mod

goto ErrorExit
LinkOptions.Mod
goto ErrorExit
ResData.Mod
goto ErrorExit
Traps.Mod

goto ErrorExit
Reals.Mod

goto ErrorExit
Strings.Mod
goto ErrorExit

echo No errors detected

goto OK
:ErrorExit

echo Errors detected

10K
pause

REM

REM Rebuild General Library

REM

SET cfg=%AstrobeM3%\configs\STM32L152.ini
SET build="C:\Program Files\AstrobeM3\AstrobeBuild.exe"

REM

cd %AstrobeM3%\Lib\General

del *.arm
del *.smb

%build% %cfgk Build.Mod

if errorlevel 1

goto ErrorExit

echo No errors detected

goto OK
:ErrorExit

echo Errors detected

10K
pause

V9.3 Copyright © 2024 CFB Software

www.astrobe.com

57 of 57

	Astrobe
	1 Introduction
	2 File Descriptions
	2.1 Example
	2.2 Linking and Loading
	2.3 Startup Code
	2.4 Library Folders
	2.5 Configuration Files
	2.5.1 Library Folders
	2.5.2 Data Addresses

	2.6 Uploading Executable Files
	2.7 Resource Data

	3 Library Modules
	3.1 Bits
	Definition
	Description

	3.2 Clock
	Definition
	Description

	3.3 Convert
	Definition
	Description

	3.4 DateTime
	Definition
	Description

	3.5 Error
	Definition
	Description

	3.6 GPIO
	Definition
	Description
	Example

	3.7 Graphics
	Definition
	Description
	References

	3.8 I2C
	Definition
	Description

	3.9 In
	Definition
	Description

	3.10 LinkOptions
	Definition
	Description

	3.11 MCU
	Definition
	Description

	3.12 Main
	Definition
	Description

	3.13 Math - Mathematical Functions
	Definition
	Description

	3.14 MAU - Memory Allocation Unit
	Definition
	Description

	3.15 Out
	Definition
	Description

	3.16 Put
	Definition
	Description

	3.17 Random
	Definition
	Description

	3.18 Reals
	Definition
	Description

	3.19 ResData
	Definition
	Description
	Example

	3.20 RTC
	Definition
	Description

	3.21 Serial
	Definition
	Description

	3.22 SPI
	Definition
	Description

	3.23 Storage
	Definition
	Description

	3.24 Strings
	Definition
	Description

	3.25 SYSTEM
	Definition
	Description

	3.26 Timers
	Definition
	Description

	3.27 Traps
	Definition
	Description

	4 Debugging
	4.1 Runtime Error Codes
	4.2 User-defined Assertions
	4.3 Reporting Runtime Errors
	4.4 Diagnosing Runtime Errors
	4.5 Diagnosing System Exceptions
	4.5.1 Using the Module Disassembler Listing:
	4.5.2 Using the Application Disassembler Listing:

	5 Compile, Link and Build Commands
	5.1 Examples
	5.2 Command Return Codes

