CFB Software

Astrobe

for Raspberry Pi RP2350 Microcontrollers

V9.3 Copyright © 2024 CFB Software 1 of 20
www.astrobe.com

Astrobe

for Raspberry Pi RP2350
Microcontrollers

Table of Contents

L INEFOAUCTION . e e e s e e e e e e e e e e as 3
2 File DESCIIPLIONS o eeeeeeeeeeeeee e 4
D R o & o Yo] [T 5
2.2 LINKINE @Nd LOAAING c..unniiiii et e et e e e e e 6
P B - [(U o 0o Yo L PP PP PP PP PRPPPPPPPPPR 7
D N o T =T AV o] [=Y U 8
2.5 Configuration FIlES.......ccoeiuiiiiiiii e e e et e e e e e 9
251 LIDrary FOIA@IS. ... e e e e e 9
2.5.2 Data AQArESSES. . eueuiiiiiiiiiiiiii e 9

2.6 Uploading Executable Files..........coiiiiiiiiiiiii e 10
2.7 ReSOUICE Data. ... eieiiii it 11

T N 1o = VA 1V, o o [L= PPN 12
3.1 Special LIbrary ModUIES.......ccuuuniiiiiiic e 12
3.1.1 MAU - Memory Allocation UNitcooeeeeeeieeeieeeeeeeeeeee e 13
30002 SYSTEM e 13

3.2 General Library ModuUles.........uu i 13

O 0 1= oYU ={=4 o F- SRR 14
4.1 RUNEIME ErTOr COUBS ..t e e e e e 14
4.2 User-defined ASSErtiONS..........eeiiiiiiiiiiiiiieete ettt 14
4.3 Reporting RUNTIME ErTOrScvieieie e e e e e 15
4.4 Diagnosing RUNTIME ErTOrS.....cuuiiiiei et et e e et e e e e e e 16
4.5 Diagnosing SYStem EXCEPTIONS. ...vvvuuiiirriiiieiiiie et ettt s eet e e e e e ee s eaeeeaa e eees 16
4.5.1 Using the Module Disassembler Listing:ccooeeiiiiiiiiiiiiiiiiiee e, 17
4.5.2 Using the Application Disassembler Listing:..........cccooeeiiiiiiiiiiiiiieiiiiceeeeeeeee, 18

5 Compile, Link and Build COmmMaNndsuuuieeeiiiiiiiiiieie et eeeariee e e e e eeaees 19
LT A =& T2 0T o L= PP 19
5.2 Command RETUM COUES.....cuuuiiiiiiiiiiiiiiiiiiiititiitieiattteeeeteebeeeeeeeeeeeeeeaenbeeabneeeaeeeeaes 20
V9.3 Copyright © 2024 CFB Software 20f20

www.astrobe.com

1 Introduction

Astrobe for RP2350 is a fast and responsive integrated development environment for
Windows which can be used to write software to target the Raspberry Pi RP2350
microcontroller as used in the PiPico 2 development board.

Refertothe Astrobe website at https://www.astrobe.com/ forthe latest information on the
availability of the different editions and versions of Astrobe for other microcontrollers.

V9.3 Copyright © 2024 CFB Software 3 of 20
www.astrobe.com

https://www.astrobe.com/

2 File Descriptions

The Astrobe compiler and linker expectthere to be a correspondence between the names of
modules in the source code and the associated filenames.

When you are creating a new source code file you should give the file the same name as its
module name with a.mod extension.

The filenames of module-related files created by Astrobe are made from the name of the
module and one of the following file extensions:

Ext Type Created by Used by Scope Description
.arm Binary | Compile Link Module Linkable object file
.asm Text Disassemble User Application | Disassembler listing
.bin Binary | Link Disassemble Application | Linked binary executable
Application file
.def Text User Edit Module Interface definition
.drf Binary | Link Disassemble Application | Reference information
Application
.ini Text Configuration | Compile Application | Compile, link, build and
Link upload options
Upload
st Text Disassemble User Module Disassembler listing
.map | Text Link User Application | Code and data memory
usage
.mod | Text Edit Compile Module Source code
.ref Binary | Link Traps Application | Trap reference resource
data
.res Any User Link Module Resource data
.S Text Disassemble Assembler Application | Assembler source
.smb Binary | Compile Compile Module Symbol file of exported
items
.uf2 Binary | Link Upload Module Linked UF2-format
executable file

V9.3 Copyright © 2024 CFB Software
www.astrobe.com

4 of 20

Module File I [

(*.mod)
p— Symbol Files @ Object Files
— (*.smb) (*.arm)
m— /
> Compile <
v
\ 4
\ 4 4
Symbol File Object File
(*.smb) (*.arm) > Link
\ 4
\ 4
Map File E)'(ecutable
(*.map) File
: (*.uf2)

2.1 Example

A module named LcdDisplay is saved as the file LcdDisplay.mod. When it is compiled the
compiler generates a symbol file LcdDisplay.smb and an object file LcdDisplay.arm.

The main module of the application called DigiClock is saved as DigiClock.mod. DigiClock
imports LcdDisplay.

When you are editing DigiClock.mod in the Astrobe editor you can automatically open the
source code of LcdDisplay by clicking on its name in the IDE's Import navigation pane.

When DigiClock is compiled the compiler uses the information in the symbol file
LcdDisplay.smb to ensure that the use of all of the variables, procedures etc. from LcdDisplay
conforms to the declarations of those items in LcdDisplay. It is not necessary to have the
source code of LcdDisplay available to validate the use of its exported items.

When DigiClock is linked the linker uses the Link Options data from the current configuration
and combines the object files Main.arm, DigiClock.arm, LcdDisplay.arm and all other

V9.3 Copyright © 2024 CFB Software 5 of 20
www.astrobe.com

imported modules. The linker creates the memory usage map file DigiClock.map, the trap
reference resource file DigiClock.ref and the executable file DigiClock.uf2.

When DigiClock is uploaded the flash memory of the target RP2350 processor is
programmed with the contents of the executable file.

2.2 Linking and Loading

An application created with Astrobe is made up from a selection of the following modules:
e System Modules

Startup code module
Astrobe MCU-specific library modules
Astrobe general library modules

e User-developed Modules

Common user library modules
Application-specific modules
Main module

The simplest application consists of a single Main module accessing the System Modules.

The Linker / Loader combines all of the components needed by an application into a single
file in binary format suitable to be uploaded by Astrobe and executed on the target
processor.

A feature of the Oberon language is that all of the information regarding dependencies
between the various modules is defined in the source code. There is no need to create and
maintain separate 'make files' as commonly used in other systems.

The only details the Astrobe Linker/ Loader needs to know to be able to build an application
are:

e The name of the main module
e The physical locations of the folders containing the library modules
e The start and end addresses of the data and code areas

When the Astrobe Project > Link command is selected the current module whose source
code is in view is taken to be the main module.

The details of the code and data address ranges and the physical locations of the library files
are as specified for the current configuration. See Library Organisation below for details.

If you are using the built-in function NEW to allocate memory from the ‘heap’ to dynamic
POINTER variables you can also use the configuration feature to specify:

e The address of the start of the heap
e The limit of the heap

V9.3 Copyright © 2024 CFB Software 6 of 20
www.astrobe.com

If you keep the default values the CPU RAM is shared between global variables, the stack
(local variables) and the heap (POINTER variables). This is suitable for typical applications.

However, if your system has non-CPU RAM that is directly addressable in the same way as
CPU RAM thenyou can change these values so the non-CPU RAM is used by the heap. More
memory is then available for global and local variables.

The values entered are listed in the linker progress report and linker map file.

2.3 Startup Code

The stack pointer, interrupt vectors etc. are initialised by startup code generated by the
linker. The startup code is the first part of the application to execute when the
microcontroller is reset.

The initialisation code of each module of the application is then executed in turn starting
with the lowest module in the dependency chain. Execution continues all the way up until
the initialisation code of the main module is started and the application proceeds.

Memory mapping control and phase-locked loop (PLL) options of the microcontroller are
configured in the process of initialising the Astrobe library module Main. The module Main
must be included in the IMPORT list of the main module of every Astrobe application to
ensure that the application is correctly initialised.

If you have the source code of the Main, MCU and Traps modules you can modify them to
allow different configurations of memory mapping and PLL features and to customise the
output of runtime error messages.

V9.3 Copyright © 2024 CFB Software 7 of 20
www.astrobe.com

2.4 Library Folders

Groups of common files that are shared between several applications developed using
Astrobe may be conveniently organised in a system of library folders avoiding the need to
duplicate copies of common / shared files.

W AstrobeRP2350-v0.3

Configs

A Examples
General

hd PiPico2

Display

w Lib

General

PiPicod

The folder Lib\General contains generic system library files that are common to all
microcontrollers targeted by Astrobe e.g. Out.*, Reals. * etc.

The remaining folders in Lib contain microcontroller-specific versions of the library files e.g.
Main.*, MCU.* etc.

The library folders are standard Windows folders containing collections of source (*.mod),
symbol (*.smb) and object files (*.arm).

V9.3 Copyright © 2024 CFB Software 8 of 20
www.astrobe.com

2.5 Configuration Files

The Compile, Link, Build and Upload options for target microcontrollers are stored in
Configuration (*.ini) files. Examples of these are included with Astrobe for the target
microcontrollers used on the supported development boards.

The commands on the Astrobe Configuration menu are used to maintain and access the
configuration files. See the Configuration Files section of the Astrobe Help file for more
information.

Configuration entries include the locations of the library folders and the code and data
address ranges to be used when linking.

2.5.1 Library Folders

The list of library foldersto be searched is stored in the configuration file. The name of each
library folder is stored on a separate line in the configuration’s Library Pathnames textbox.

As many as ten library folders may be entered; any excess entries are ignored. Examples for
Astrobe for RP2350 used to target the Raspberry Pi Pico 2 board are:

D:\AstrobeRP2350-v9.3\Lib\PiPico2
D:\AstrobeRP2350-v9.3\Lib\General

or

%AstrobeRP2350%\Lib\PiPico2
%AstrobeRP2350%\Lib\General

where %AstrobeRP2350% is substituted with the location of the library and example
files that you specified when you installed or last upgraded Astrobe for RP2350.

The editor, compiler, linker and builder first search the <current folder> when trying to
locate imported symbol and object files. They then search each of the library folders in the
list. The search continues until the file is found or the last folder in the list has been
searched.

<currentfolder> is the folder which contains the source file (*.mod) currently being compiled
or the main object file (*.arm) currently being linked.

2.5.2 Data Addresses

The configuration files have entries, Data Range and Code Range to allow you to specify the
Code and Data Flash and RAM address ranges to use when the Astrobe linker produces the
binary executable file.

Developers targeting other MCUs can create new configuration files and develop their own
hardware-specific library modules using the files and source code supplied with Astrobe as
examples.

V9.3 Copyright © 2024 CFB Software 9 of 20
www.astrobe.com

2.6 Uploading Executable Files

Development boards supported with Astrobe allow executable files (*.uf2) which were
created by the Astrobe Link or Build commands to be uploaded via a USB connection from
the PC to the development board. This is done using the Astrobe Upload command.

V9.3 Copyright © 2024 CFB Software 10 of 20
www.astrobe.com

2.7 Resource Data

The usual way to process constant data in an Oberon program is to declare the valuesin a
CONST list or store them in a global array in the initialisation section of a module. Neither of
these methods is practical when dealing with large amounts of constant data (e.g. the
definition of a font, a bitmap image etc.).

Typically on a PC system, this sort of data would be stored in a file to be read at runtime. As
a file systemis often not available on the smaller embedded systems targeted by Astrobe, a
different approach is required. The solution used is to gather together all of the relevant
data files at link time and append them to the linked executable to be stored in Flash ROM
when the program is uploaded.

A library module ResData is provided to allow the programmer to conveniently access the
data from Flash ROM within the program as if it were data stored in a random-access disk
file.

Several resources can be attached to the one program; each is identified by its module
name. Typically, the steps involved in making a resource file are:

e Make a copy of the original data file
e Rename the copy to match the associated module name with the extension .res
e Movethe renamed copy to the folder which contains the source code of the module

At link time, after the Astrobe linker has linked all of the object files <module>.arm into the
executable program, it looks for the corresponding resource files named <module>.res and
appends them to the executable.

If you needto associate several different resource files with one module you could create an
empty resource module for each separate resource e.g.

MODULE MyData;
END MyData.

and theninclude the names of those resource modules in the IMPORT list of the associated
module.

The resource file can contain any type of data. How thatdata is interpreted is determined by
the programmer. The only requirement is that the size of the file is a multiple of four bytes.

Study the source code of the Traps library module for an example of how to use resource
files.

V9.3 Copyright © 2024 CFB Software 11 of 20
www.astrobe.com

3 Library Modules

The following library modules are included with Astrobe for RP2350.

Module name Description

Bits Bitwise operations on integers

Convert Conversion of integers to / from strings

DateTime Date and time string conversions

Error Error messages referenced by Traps

GPIO General Purpose IO pin configuration and control

Graphics Device-independent drawing of lines, circles and ellipses
12C Reading from and writing to the I12C bus in Master mode

In Formatted ASCII text input

LinkOptions Values of options supplied by the user at link time

MAU Memory allocation unit

MCU Microcontroller-specific definitions and peripheral addresses
Main Initialisation code required by an application

Math Basic mathematical and trigonometric functions

Out Formatted ASCII text output

Put String-handling helper functions used by Convert, Reals etc.
RTC Real-Time Clock date and time

Random Pseudo-random number generator

Reals Real number support and conversion to / from strings
ResData Access constant user data attached to the program by the linker
SPI Reading from and writing to the Serial Peripheral Interface bus
SYSTEM Implementation-specific low level functions

Serial Basic polled UART serial 10

Storage User-definable memory allocation / deallocation procedures
Strings General string-handling functions

Timers Microsecond and millisecond time measurement and delays
Traps Runtime error trapping

NOTE: Commented definitions of exported procedures and other items are provided in the
form of corresponding ‘definition’ files (e.g. Out.def) in editions of Astrobe that do not
include source code.

3.1 Special Library Modules

The modules MAU and SYSTEM are special i.e. they are dependent on the version of the
compiler and must follow some specific conventions.

V9.3 Copyright © 2024 CFB Software 12 of 20

www.astrobe.com

3.1.1 MAU - Memory Allocation Unit

The module MAU contains the functions used by the system for dynamic variable memory
allocation. MAU is dependent on the version of the compiler and must follow some specific
conventions. It should not be replaced with a user-defined module and its interface
definition must not be changed.

If a user module calls the Oberon NEW function to allocate dynamic memory to a pointer
variable then MAU.New is automatically called and the MAU module is automatically
imported as if you had added it to your import list. You should not call MAU.New directly.

MAU.New calls Allocate which assigns the required number of bytes of memory from the
heap to the pointer variable.

MAU.Dispose calls Deallocate which can potentially be used to return dynamic memory that
is no longer needed to the heap.

The standard versions of Allocate and Deallocate only make the memory available for later
reuse if the block being deallocated is the most recent block to be allocated.

The standard versions of Allocate and Deallocate are included in the Storage library module
so that you can modify them if you have the source code. SetNew can be usedto replace the
standard version of Allocate, and SetDispose can be used to replace the standard version of
Deallocate with ones that you have written.

3.1.2 SYSTEM

SYSTEM is a pseudo-module i.e. it contains no source code. Its functionality is implemented
entirely within the compiler. Some of the functions allow parameters of any basic type i.e.
INTEGER, SET, BOOLEAN etc. to be passed. Others allow parameters of any type. Generic
functions of this type are normally not possible to write using the Oberon language.

The presence of SYSTEM in the IMPORT list of a module indicates that the module is
implementation-dependent.

3.2 General Library Modules

All other library modules are normali.e.

e They must be explicitly imported by modules which access their exported items.
e They could be replaced with alternative versions developed by an Astrobe user.

Some library procedures use assertions to check that the values of input parameters are
within a valid range. Invalid values result in a runtime assertion error. The error codes and
reason for the error are listed in the section titled Runtime Error Codes below.

V9.3 Copyright © 2024 CFB Software 13 of 20
www.astrobe.com

4 Debugging
4.1 Runtime Error Codes

The error codes assigned to runtime errors and assertions detected by Oberon are:

Code Reason

Index out of bounds

Type test failure

Source and destination arrays are not the same length

Invalid value in case statement

Attempt to call a NIL procedure variable

String too long or destination string too short

N o|ju|b|lwWw]|IN]|EF

Integer division by zero or negative divisor

8,9, 10 | FPU assertions

11 | Reserved

12 | Attempt to dispose a NIL pointer

13..19 | Reserved

20..25 | Library assertions — see the Error module for definitions

26..99 | Reserved

100..199 | User-defined assertions

200..255 | User-defined assertions with customisable trap handlers

4.2 User-defined Assertions

You can use the Oberon ASSERT function to trap an application-specific error e.g. to detect
impending stack overflow:

ASSERT(Storage.StackAvailable < minRequired, 130)
where minRequired is a user-defined value.

User-defined assertions should use error codes in the range 100 — 255 to distinguish them
from Runtime and Library errors.

Error codes 100 — 199 will display error information in the same way as the Library errors.
Error codes 200 — 255 can be used if you want to handle the error in a different way. An

example application, called UserTraps, is supplied with Astrobe to demonstrate how this can
be done.

V9.3 Copyright © 2024 CFB Software 14 of 20
www.astrobe.com

4.3 Reporting Runtime Errors

The above runtime, library and programmer-defined error conditions and assertions result in
the execution of an RP2350 supervisor call instruction (SVC) which calls a default trap
handler in the Astrobe library module Traps.

The trap handler reports:

e anerror code or message describing what type of errorit s

e the name of the module and procedure that was being executed

e the address of the instruction which caused the error
the line number of the corresponding statement in the source code

e the values of the registers which are automatically saved at the time of the runtime
error or assertion failure

If the Stack Trace option on the Astrobe Configuration dialog was enabled when the
module was compiled, the details of the sequence of procedure calls that led to the
error are included:

TestTraps
i ger divided by zero or negative divisor
TestTraps.DivByZero E1ee882994H,

stTraps. ;

If the procedure call Traps.ShowRegs(FALSE) is made before the trap occurs the display
of register values is suppressed. This is useful if the display only has a few lines and
cannot show all of the information without scrolling.

The error messages that are displayed are defined in the module Error. If there is no
message corresponding to the error code, the error code is displayed instead. The
information is reported using the standard 10 functions exported by the Astrobe Out
module. By default the messages will appear on a serial terminal connected to UARTO. The
trap handler then processes an infinite loop until the system is reset.

Professional and Personal Editions:
You can modify the source code of Traps to customise the trap-handling process.

Professional Edition:

When debugging your program, you can use the register values in conjunction with the
assembly listing of the module or application to help identify the values of variables at the
time of failure.

V9.3 Copyright © 2024 CFB Software 15 of 20
www.astrobe.com

4.4 Diagnosing Runtime Errors

When a runtime error occurs or an assertion fails, use the module name and line number
information reported by the trap handler to identify the source of the error.

e Open the source code of the named module in the editor
e Use the Search > Goto command to locate the actual source line by its line number.

4.5 Diagnosing System Exceptions

Traps caused by runtime errors or assertion failures which resultin Supervisor Calls (SVC) are
easy to locate as they give you the module name and line number of the offending line of
source code. Hardware-related and other system exceptions are more difficult to locate as
they only give you the module name and the address of the instruction that failed.
Fortunately they are much rarer than runtime errors.

The type of RP2350 system exceptions handled by the Astrobe Traps module include the
following:

NMI
e Hard Fault
e Memory Manager
e Bus Fault
e Usage Fault

Refer to the Armv8-M Architecture Reference Manual which can be downloaded from the
Arm website, for details of the possible causes of these exceptions.

Professional Edition:

If the exception is not caused by a secondary effect it is usually possible to identify the line
of code in your application which generated the offending instruction. To do this you need
to have:

e The runtime error message displayed when your application terminated. This will
give you the module name and exception address.

o The map file for the main module (<ModuleName>.map) which was created when
you linked / built the application. The start address of the module is listed in the
Code Address column of the map file.

e A Module Disassembler listing (Project > Disassemble Module) or an Application
Disassembler listing (Project > Disassemble Application) of the problem module.

V9.3 Copyright © 2024 CFB Software 16 of 20
www.astrobe.com

4.5.1 Using the Module Disassembler Listing:

E‘:g] Astrobe for RP2350 Professional Edition - PiPico?

File Edit Search View Project PRun Configuration Tools Help

D% @& 9% E EEFIQVMIR L R) @
Procedures ||'|1pu|'t5 HC Dir maod HC Dir st
First#* =
GetFreeHeader* PROCEDURE InitHeader*{WVAR hdr: Header);
InitDisk* BEGIN
. 388 @17CH @B583H push {re, rl, 1r }
Next* CLEAR(hdr)
Open# END InitHeader;
TaDMY* . 382 @17EH @9386H ldr r8, [sp]
ToHMS* . 384 alseH 62le6H movs rl,%8
UpdateDisk* . 386 @l82H @F2481266H Mo r2,#256
UpdateHeader#* . 398 a@lscH @BFeaH nop
392 @188H BF3481B84H str.w rl,[r8],#4
396 @lsCH @a3A8l1H subs r2,%1
398 a@lsEH @DCFEH bgt.n -18 -» 392
488 8198H epeszH add sp,H8
482 @192H GEDeeH pop I pc}
PROCEDURE* ToDMY*{hdr: Header; VAR dd, mm, yyv: INTEGER);
VAR
date: INTEGER;
BEGIN
484 @194H @B588H push I 1r 3
date := hdr.date;
4p5 @196H BGACEH ldr r6, [re,#44]
488 8195H 84635H mow r5,rb
vy = BFX{date, 31, 2&);
41@ a8l94H @F3C56685H ubfx ra,r5,26,6
414 819EH @eo826H str ré, [rd]
mm := BFX(date, 25, 22);
416 a8laBH @F3C55683H ubfx re,r5,22,4
428 @1A4H @6B1EH str r6,[r3]
dd := BFX(date, 21, 17)
END ToDMY
422 alagH @rF3C54644H ubfx re,r5,17,5
426 @1AAH @6816H str r6, [r2]
428 @1ACH BEBDeeH pop I pc}
458 @lAEH @BFeeH nop
L Line 225 Col 37 DM Astrobe RP Z2350-v3 3\ Examples\FiFico 2 HC Dir Ist d

You can calculate the offset and find the corresponding line of code in the disassembly
listing using the following formula:

offset = exception address - start address - n

where n is 8 for the RP2350. It is subtracted because the program counter is ahead of the
current instruction by that many bytes. If you look in the disassembler listing for the
instruction with the same offset you will see the accompanying Oberon source line which
generated that instruction.

V9.3 Copyright © 2024 CFB Software 17 of 20
www.astrobe.com

4.5.2 Using the Application Disassembler Listing:

r-:}] Astrobe for RP2350 Professional Edition - PiPico2

File Edit Search View Project FRun Configuration Toecls Help

DFEN RS9 %6 EEIDPE M| P& @
Procedures |mports TestTraps.mod TestTraps.asm

RTC.Init 18582 @29056H @F7FFFFODH bl.w Main.Init =
RTC.NVIC_EnableIRQ 18586 @2954AH @E8esH b a8 -> 18598
RTC.SetDMY 18588 @295CH @8aeDeH <LineNo: 288>
RTC.SetHMS 18508 @295EH @BDeBH pop { pc }
RTC.TimerHandler

Serial..init MODULE TestTraps:

serial.ConfigurePins 18592 @2968H @eAREEEEEH @

Serial.GetCh

Serial.Init el a S W TestTraps .DivByZerof

Serial.PutCh 185096 @2964H @EBES88H push { 1r }
Serial.RxReady 18598 @2966H @B8s3H sub sp,#12
Serial.SetlUartNo 1888 82068H @288BH movs ré,#11
serial.TxReady lacaz 8290AH @9888H str ré,[sp]
TestTraps..1ilnit leae4 ©296CH @2eeed movs re,#e
TestTraps.DivByZero 18686 8296EH @9881H str ré,[sp,#4]
TestTraps.Run lacas 82978H e2889H movs ra, 9
Traps..init lesld ©2972H @9882H str ré,[sp,#8]
Traps.Assign 1812 82974H @9388H ldr ré,[sp]
Traps.GetName 18614 82976H @9981H ldr rl,[sp,#4]
Traps.HalfWord 186l @2978H GF1B18F88H cmp.w rl,%8
Traps.IdentifyLocation las2a 8297CH @aDCelH bgt.n 2 -» 18626
Traps.IdentifyTrap 1lac2z @297EH @DFe7H SWC 7

Traps.Init 18s24 @2088H eB8l6H <LineNo: 223
Traps.IntArrayToChars 18626 ©29832H @FB98F2F1H sdiv.w rz,ré,rl
Traps.IsBL lac3a 82936H @Fee28ellH mls.w ré,r2,rl,ré
Traps.IsBLX 18634 B8298AH @EBA27GADEH sub.w ré,r2,rd,lsr 31
Traps.Length 18638 @8295EH @9882H str ré,[sp,#3]
Traps.NextLR les4@ @2998H @BEA3H add sp,#12
Traps.0OutName lac42 82992H @BDEEH pop { pc }
Traps.0utStackItem

Traps.5etUserHandler PROCEDURE TestTraps.Run:

Traps.S5howRegs le8s44 82994H @BS8E8H push { 1lr }
Traps.5howStack lecds 82996H @BF8eH nop
Traps.5StackAdjusted 18648 @2993H GAB88H adr r@,pc,#3 -> 18652
Traps.5tackedRegs les5@ @2994H @E8asH b 1a -> 1e664
Traps.5tackTrace lag52 @299CH @74736554H "Test”

Traps.5VCTrap 18656 @20A8H @78617254H "Trap"
Traps.5ysHandler leccd @29A4H oBE8BEAT73H “s"

Traos. TracHandler laasd4 @2948H @2184H movs rl,%#1a

§ Line 4099 Col 11 D:\Astrobe RP 23509 3 ExamplesGeneral\ Test Traps.asm :

You can calculate the offset and find the corresponding line of assembler code with that
offset in the disassembly listing using the following formula:

offset = exception address - code start address

where the addresses are hexadecimal numbers and code start address is the first Code
Range entry on the Astrobe Configuration dialog. The heading of that block of assembly
instructions will show the name of the module and procedure where the instruction is
located.

V9.3 Copyright © 2024 CFB Software 18 of 20
www.astrobe.com

5 Compile, Link and Build Commands

Professional Edition:
Separate command-line programs for the Oberon RP2350 Compiler, Builder and Linker
which correspond to the built-in compile, build and link commands in the IDE are included.

The separate compiler, builder and linker can be used with automatic 'build' tools, DOS-
batch commands etc. These are useful for handling a regular series of compilations and links
when building multiple configurations, multiple targets etc. They can also be useful when
recompiling a number of modules after changing the interface of a low-level imported
module or upgrading to a newer version of Astrobe.

All of the commands have two required parameters.

AstrobeCompile <configfile>.ini [<path>]<ModuleName>.mod
AstrobeBuild <configfile>.ini [<path>]<MainModuleName> .mod

AstrobelLink <configfile>.ini [<path>]<MainModuleName> .mod

MainModuleName is the filename of the main module being compiled or linked.
configfile is the name of the configuration file containing the options to use.
5.1 Examples

AstrobeCompile D:\AstrobeRP2350-v9.3\Configs\PiPico2.ini Lists.mod
AstrobeBuild D:\AstrobeRP2350-v9.3\Configs\PiPico2.ini Blinker.mod

AstrobelLink D:\AstrobeRP2350-v9.3\Configs\PiPico2.ini Blinker.mod

V9.3 Copyright © 2024 CFB Software 19 of 20
www.astrobe.com

5.2 Command Return Codes

If the command executes without any compiler or linker errors it returns zero otherwise it
returns 1. Examples of DOS batch scripts, for use with Astrobe for RP2350, which use these
return values are:

REM

REM Rebuild General Library

REM

SET cfg=%AstrobeRP2350%\configs\PiPico2.ini
SET compile="C:\Program Files\AstrobeRP2350\AstrobeCompile.exe"

REM

cd %AstrobeRP2350%\Lib\General

del *.arm

del *.smb

%compile% %ctghk
if errorlevel 1
%compile% %cfgh
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfgh
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfghk
if errorlevel 1
%compile% %cfgh
if errorlevel 1
%compile% %cfgh
if errorlevel 1
%compile% %cfgh
if errorlevel 1

Math.Mod

goto ErrorExit
Random.Mod
goto ErrorExit
Put .Mod

goto ErrorExit
Convert.Mod
goto ErrorExit
In.Mod

goto ErrorExit
Out .Mod

goto ErrorExit
LinkOptions.Mod
goto ErrorExit
ResData.Mod
goto ErrorExit
Traps.Mod

goto ErrorExit
Reals.Mod

goto ErrorExit
Strings.Mod
goto ErrorExit

echo No errors detected

goto OK
:ErrorExit

echo Errors detected

: 0K
pause

REM

REM Rebuild General Library

REM

SET cfg=%AstrobeRP2350%\configs\PiPico2.ini
SET build="C:\Program Files\AstrobeRP2350\AstrobeBuild.exe"

REM

cd %AstrobeRP2350%\Lib\General

del *.arm
del *.smb

%build% %cfg% Build.Mod

if errorlevel 1

goto ErrorExit

echo No errors detected

goto OK
:ErrorExit

echo Errors detected

:OK
pause

V9.3 Copyright © 2024 CFB Software

www.astrobe.com

20 of 20

	Astrobe
	1 Introduction
	2 File Descriptions
	2.1 Example
	2.2 Linking and Loading
	2.3 Startup Code
	2.4 Library Folders
	2.5 Configuration Files
	2.5.1 Library Folders
	2.5.2 Data Addresses

	2.6 Uploading Executable Files
	2.7 Resource Data

	3 Library Modules
	3.1 Special Library Modules
	3.1.1 MAU - Memory Allocation Unit
	3.1.2 SYSTEM

	3.2 General Library Modules

	4 Debugging
	4.1 Runtime Error Codes
	4.2 User-defined Assertions
	4.3 Reporting Runtime Errors
	4.4 Diagnosing Runtime Errors
	4.5 Diagnosing System Exceptions
	4.5.1 Using the Module Disassembler Listing:
	4.5.2 Using the Application Disassembler Listing:

	5 Compile, Link and Build Commands
	5.1 Examples
	5.2 Command Return Codes

